
Statistical Machine Learning
Lecture notes on linear regression, logistic regression, deep learning & boosting

Fredrik Lindsten
Niklas Wahlström

Andreas Svensson
Thomas B. Schön

Version: February 2, 2018

Department of Information Technology, Uppsala University



Preface and reading instructions

These lecture notes are intended as a complement to the book by James et al. (2013) (available at http://www-bcf.
usc.edu/~gareth/ISL/) for the course 1RT700 Statistical Machine Learning given at the Department of Information
Technology, Uppsala University.

For an overview of these notes, the course content is listed along with its recommended reading in the following
table:

Content James et al. 2013 These lecture notes

Introduction to the topic 2.1, 4.1
Statistics and probability background 1
Linear regression 2
Introduction to R 2.3
Logistic regression 4.3 3.1
LDA, QDA 4.4
kNN 2.2.3
Bias-variance trade-off 2.2.1-2.2.2
Cross validation 5.1
Tree-based methods 8.1
Bagging 8.2.1
Boosting 5
Deep learning 3.2, 4

Recommendations on supplementary reading etc. can be found on the course website and the ‘Further
reading’-sections in these notes. We are very thankful for any comments you might have on these lecture notes,
ranging from small typos all the way to bigger comments on the overall structure.

The authors
Uppsala

February 2018
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1. Background and notation

The word statistical used in the title of this course refers to the fact that we will use statistical tools and probability
theory to describe the methods that we work with. This is a very useful approach to machine learning since most
data encountered in practice can be viewed as ‘noisy’ in the sense that there are variations in the data that are
best described as realizations of random variables. Using statistical methods allows us to analyze the properties
of the models that are learned from noisy data and to reason about the inherent uncertainties in these models and
their predictions.

To be able to work with statistical machine learning models we need some basic concepts from statistics and
probability theory. Hence, before we embark on the statistical machine learning journey in the next chapter we
present some background material on these topics in this chapter. Furthermore, we discuss some of the notation
used in these lecture notes and point out some notational differences from the text book James et al. 2013.

1.1. Random variables

A random variable Z is a variable that can take any value z on a certain set Z and its value depends on the
outcome of a random event. For example, if Z describes the outcome of rolling a die, the possible outcomes are
Z = {1, 2, 3, 4, 5, 6} and the probability of each possible outcome of a die roll is typically modeled to be 1/6.
We write Pr(Z = z) = 1/6 for z = 1, . . . , 6.

In these lecture notes we will primarily consider random variables where Z is continuous, for example Z = R
(Z is a scalar) or Z = Rd (Z is a d-vector). Since there are infinitely many possible outcomes z ∈ Z, we cannot
speak of the probability of an outcome z—it is almost always zero! Instead, we use the probability density
function, denoted by p(z).

Remark 1.1. In this document we will use the symbol p(·) as a general probability density function, and we will
let its argument indicate what the underlying random variable is. For instance, when writing p(z) it is implicit
that this is the probability density function for Z, p(y) is the probability density function for Y , etc. Furthermore,
we will use the word ‘distribution’ somewhat sloppily, also when referring to a probability density function.

The probability density function p : Z 7→ R+ describes the probability of Z to be within a certain set C ⊆ Z

Pr(Z ∈ C) =

∫
z∈C

p(z)dz. (1.1)

For example, if Z is a random variable with the probability density function p(z) describing the predicted
temperature tomorrow, the chance for this temperature to be between 15◦ and 20◦ is Pr(15 < Z < 20) =∫ 20
15 p(z)dz. Note that p(z) is not (in general) upper bounded by 1, however it holds that it integrates to 1:∫
z∈Z p(z) = 1. For notational convenience, when the integration is over the whole domain Z we simply write

∫
instead of

∫
z∈Z, for instance

∫
p(z)dz = 1.

A common probability distribution is the Gaussian (or Normal) distribution, whose density is defined as

p(z) = N (z |µ, σ2) = 1

σ
√
2π

exp

(
−(z − µ)2

2σ2

)
, (1.2)

where we have made use of exp to denote the exponential function; exp(x) = ex. We also use the notation
Z ∼ N (µ, σ2) to say that Z has a Gaussian distribution with parameters µ and σ2 (i.e., its probability density
function is given by (1.2)). The symbol ∼ reads ‘distributed according to’.
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1. Background and notation

The expected value or mean of the random variable Z is given by

E[Z] =
∫
zp(z)dz. (1.3)

We can also compute the expected value of some arbitrary function g(z) applied to Z as

E[g(Z)] =
∫
g(z)p(z)dz. (1.4)

For a scalar random variable with mean µ = E[Z] the variance is defined as

Var[Z] = E[(Z − µ)2] = E[Z2]− µ2. (1.5)

The variance measures the ‘spread’ of the distribution, i.e. how far a set of random number drawn from the
distribution are spread out from their mean. The variance is always non-negative. For the Gaussian distribution
(1.2) the mean and variance are given by the parameters µ and σ2 respectively.

Now, consider two random variables Z1 and Z2 (both of which could be vectors). If we are interested in
computing the probability that Z1 ∈ C1 and Z2 ∈ C2 we need their joint probability density function p(z1, z2).
Using this joint distribution we can compute the probability analogously to the previous case according to

Pr(Z1 ∈ C1, Z2 ∈ C2) =

∫
z1∈C1, z2∈C2

p(z1, z2)dz1dz2. (1.6)

An important property of pairs of random variables is that of independence. The variables Z1 and Z2 are said to
be independent if the joint probability density function factorizes according to p(z1, z2) = p(z1)p(z2). It follows
from (1.6) that the probability factorizes in a similar way: Pr(Z1 ∈ C1, Z2 ∈ C2) = Pr(Z1 ∈ C1) Pr(Z2 ∈ C2).
Furthermore, for independent random variables the expected value of any separable function factorizes as
E[g1(Z1)g2(Z2)] = E[g1(Z1)]E[g2(Z2)].

From the joint probability density function we can deduce both its two marginal densities p(z1) and p(z2) using
marginalization, as well as the so called conditional probability density function p(z2 | z1) using conditioning.
These two concepts will be explained below.

1.1.1. Marginalization

Consider a multivariate random variable Z which is composed of two components Z1 and Z2, which could be
either scalars or vectors, as Z = [ZT

1 , Z
T
2 ]

T. If we know the (joint) probability density function p(z) = p(z1, z2),
but are interested only in the marginal distribution for z1, we can obtain the density p(z1) by marginalization

p(z1) =

∫
z2∈Z2

p(z1, z2)dz2 (1.7)

where Z2 is the space on which Z2 is defined. The other marginal p(z2) is obtained analogously by integrating
over z1 instead. In Figure 1.1 a joint two-dimensional density p(z1, z2) is illustrated along with their marginal
densities p(z1) and p(z2).
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1. Background and notation
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Figure 1.1.: Illustration of a two-dimensional joint probability distribution p(z1, z2) (the surface) and its two marginal
distributions p(z1) and p(z2) (the black lines). We also illustrate the conditional distribution p(z1|z2 = γ) (the
red line), which is the distribution of the random variable Z1 conditioned on the observation z2 = γ (γ = 1.5
in the plot).

1.1.2. Conditioning

Consider again the multivariate random variable Z which can be partitioned in two parts Z = [ZT
1 , Z

T
2 ]

T. We
can now define the conditional distribution of Z1, conditioned on having observed a value Z2 = z2, as

p(z1 | z2) =
p(z1, z2)

p(z2)
. (1.8)

If we instead have observed a value of Z1 = z1 and want to use that to find the conditional distribution of Z2

given Z1 = z1, it can be done analogously. In Figure 1.1 a joint two-dimensional probability density function
p(z1, z2) is illustrated along with a conditional probability density function p(z1 | z2).

From (1.8) it follows that the joint probability density function p(z1, z2) can be factorized into the product of
a marginal times a conditional,

p(z1, z2) = p(z2 | z1)p(z1) = p(z1 | z2)p(z2). (1.9)

If we use this factorization for the denominator of the right-hand-side in (1.8) we end up with the relationship

p(z1 | z2) =
p(z2 | z1)p(z1)

p(z2)
. (1.10)

This equation is often referred to as Bayes’ rule.
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1. Background and notation

1.2. A note on notation

We end this chapter by defining some notation that we will use throughout these lecture notes. First, some general
mathematical notation:

• log(·) refers to the natural logarithm (base e) and it is the inverse of the exponential function exp(·).

• I(·) is the indicator function, which is either zero or one depending on whether its argument is true or false.
For instance,

I(x < a) =

{
1 if x < a,

0 if x ≥ a.

• sign(·) is the signum function,

sign(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

• min is the minimum operator which returns the smallest value attained by some function. For instance,
minx(x+ 5)2 = 0.

• argmin is the mathematical operator which return the argument of the minimum. For instance,
argminx(x+ 5)2 = −5.

• max and argmax are defined analogously as min and argmin, but with maximum instead of minimum.

• For a function f : Rd 7→ R, ∇xf(x) denotes the gradient, i.e. the vector of all partial derivatives,

∇xf(x) =
[
∂f
∂x1

, . . . , ∂f
∂xd

]T
.

• If v = [v1, . . . , vd]
T is a vector of dimension d, its Lp-norm is defined as ‖v‖p =

(∑d
i=1 |vi|p

)1/p
for

any p ≥ 1. For p = 2 we get the usual Euclidian norm and for p = 1 we get the Manhattan norm.

• AT denotes the transpose of matrix A.

• vec is the vectorization operator which stacks the columns of a matrix in a vector. For instance,

vec
[
1 3
2 4

]
=
[
1 2 3 4

]T
.

In addition to the aforementioned definitions, we also use some notational conventions which are specific to
the topic under study. These conventions largely follow those used in James et al. 2013.

Upper case letters, specifically Y andX , are used when talking about ‘conceptual’ or ‘generic’ model variables.
For instance, a conceptual regression model is Y = f(X) + ε. When talking about specific/observed values of
these variables we use lower case letters. For instance, the training data points are denoted by (xi, yi). This is
similar to the common notation that upper case is used for random variables and lower case for their realizations,
but we generalize the convention to cover conceptual model variables even if they are not assumed to be random.

We use n to denote the number of training data points and the training data set is written as T = {(xi, yi)}ni=1.
We use bold face for vectors and matrices which are formed by stacking all the training data points in some way.
For instance, the vector containing all training outputs is written as

y = [y1, . . . , yn]
T. (1.11)

This notation is extensively used in chapter 2.
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1. Background and notation

Finally, we point out a few notational caveats that could cause confusion. A few symbols have double
meanings.

• We use K to denote the number of classes in multi-class classification problems, but K is also used by
James et al. 2013, Section 2.2.3 to denote the number of neighbors in the K-nearest neighbors method.

• We use p to denote the number of inputs, i.e., the dimension of the input vector X , but also as a generic
probability density function as described in Section 1.1.

Furthermore, James et al. 2013 use the symbol p to denote conditional class probabilities when addressing
classification problems. To avoid confusion with probability density functions we instead use the symbol q to
denote these conditional class probabilities. Specifically, for binary classification problems where Y ∈ {0, 1},

Pr(Y = 1 |X = x) =

{
q(x) in these lecture notes,
p(x) in James et al. 2013.

For multi-class classification problems where Y ∈ {1, . . . ,K},

Pr(Y = k |X = x) =

{
qk(x) in these lecture notes,
pk(x) in James et al. 2013.

The notation q(·) and qk(·) is used for logistic regression models in chapter 3 as well as for deep learning models
in chapter 4.
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2. Linear regression

Regression refers to the general statistical problem of estimating the relationships between some (qualiative
or quantitative1) input variables X = [X1, . . . , Xp]

T and a quantitative output variable Y . Some common
synonyms to input variable are predictor, regressor, feature, explanatory variable, controlled variable, independent
variable and covariate. Synonyms to output variables include response, regressand, label, explained variable,
predicted variable and dependent variable. Regression, in general, is about learning a model f

Y = f(X) + ε, (2.1)

where ε is some noise/error which describes everything that cannot be captured by the model. Specifically, we
view ε as a random variable that is independent of X and has mean zero.

Linear regression, which is our first approach to regression, has a linear (or affine) combination of the input
variables X as its model f . Even though it is a relatively simple model, it is still surprisingly useful on its
own. Furthermore, it constitutes an important building block in more advanced methods such as deep learning
(chapter 4). Throughout this chapter we will use Example 2.1 with car stopping distances to illustrate the ideas.

Example 2.1: Car stopping distances

Ezekiel and Fox (1959) presents a data set with 62 observations of how long distance that is needed for various cars
at different initial speeds to break to a complete stop.a The data set has the two following variables:

• Speed: The speed of the car when the break signal is given.

• Distance: The distance travelled after the signal is given until the car has reached a full stop.

We decide to interpret Speed as the input variable X , and Distance as the output variable Y .

0 10 20 30 40
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50
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150

Speed (mph)

D
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ta
nc

e
(f

ee
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Data

Our goal is to use linear regression to estimate (that is, to predict) how long the stopping distance would be if the
initial speed would be 33 mph or 45 mph (two speeds at which no data has been recorded).

aThe data set is somewhat dated, so the conclusions are perhaps not applicable to modern cars. We hope, however, that it does
not affect the pedagogical purpose of this example, and we believe that the reader is capable of pretending that the data
comes from her/his own favorite example instead.

1We will start with quantiative input variables, and discuss qualitative input variables later in 2.4.
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2. Linear regression

2.1. The linear regression model

The linear regression model describes the output variable Y (a scalar) as an affine combination of the input
variables X1, X2, . . . , Xp (each a scalar) plus a noise term ε,

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp︸ ︷︷ ︸
f(X;β)

+ε. (2.2)

We refer to the coefficients β0, β1, . . . βp as the parameters in the model, and we sometimes refer to β0 specifically
as the intercept term. The noise term ε accounts non-systematic, i.e. random, errors between the data and the
model. The noise is assumed to have mean zero and to be independent of X . The main part of this chapter
will be devoted to how to learn the model—that is, to learn the parameters β0, β1, . . . , βp—from some training
data set T = {(xi, yi)}ni=1. Before we dig into the details in Section 2.2, however, let us just briefly start by
discussing the purpose of using linear regression. The linear regression model can namely be used for, at least,
two different purposes: to understand relationships in the data by interpreting the parameters β, and to predict
future outputs for inputs that we have not yet seen.

Remark 2.1. It is possible to formulate the model also for multiple outputs Y1, Y2, . . . , see exercises 1.1d and 1.5.
This is commonly referred to as multivariate linear regression.

2.1.1. Understanding relationships

An often posed question in sciences such as medicine, sociology etc., is to determine whether there is a correlation
between some variables or not (‘do you live longer if you only eat sea food?’, etc.). Such questions can be
addressed by studying the parameters β in the linear regression model. The most common question is perhaps
whether it can be indicated that some correlation is present between two variables X1 and Y , which can be done
with the following reasoning: If β1 = 0, it would indicate that there is no correlation between Y and X1 (unless
the other inputs also depend on X1). By estimating β1 together with a confidence interval (describing uncertainty
of the estimate), one can rule out (with a certain significance level) that X1 and Y are uncorrelated if 0 is not in
the confidence interval for β1. The conclusion is then instead that some correlation is likely to be present between
X1 and Y . This type of reasoning is referred to as hypothesis testing and it constitutes a important branch of
classical statistics. A more elaborate treatment of hypothesis testing in linear regression models can be found
in James et al. 2013, Chapter 3. However, we shall mainly be concerned with another application of the linear
regression model, namely to make predictions.

2.1.2. Predicting future outputs

In machine learning, the emphasis is rather on predicting some (not yet seen) output ŷ? for some new input x?.
To make a prediction for a test input x?, we insert x? into the model (2.2). Since we (by assumption) cannot
predict ε, we take our prediction ŷ? without ε as

ŷ? = β0 + β1x?1 + β2x?2 + · · ·+ βpx?p. (2.3)

We use the symbol ̂ on y to indicate that it is a prediction, containing no ε. (If we were able to somehow observe
the actual output from x?, we would denote it y?.)

7



2. Linear regression
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Figure 2.1.: Linear regression with p = 1: The black dots represent n = 3 data points, from which a linear regression model
(blue line) is learned. The model, however, cannot fit the data exactly, but there is an error/noise ε (green) left.
The model can be used to predict (red cross) the output ŷ? for a test input point x?.

2.2. Learning the model from training data

To use the linear regression model, we first need to learn the unknown parameters β0, β1, . . . , βp from a training
data set T . The training data consists of n samples of the output variable Y , we call them yi (i = 1, . . . , n), and the
corresponding n samples xi (i = 1, . . . , n) (each a column vector) of the input variable X = [X1 X2 · · · Xp]

T.
We write the data set on the matrix form

X =


1 −xT1−
1 −xT2−
...

...
1 −xTn−

 , y =


y1
y2
...
yn

 , where each xi =


xi1
xi2

...
xip

 . (2.4)

Note that X is a n× (p+ 1) matrix, and y a n× 1 matrix. The first column of X, with only ones, correspond to
the intercept term β0 in the linear regression model (2.2). If we also stack the unknown parameters β0, β1, . . . , βp
into a (p+ 1) vector

β =


β0
β1
...
βp

 , (2.5)

we can express the linear regression model as a matrix multiplication

y = Xβ + ε, (2.6)

where ε is a vector of errors/noise.
Learning the unknown parameters β amounts to finding values such that the model fits the data well. There are

multiple ways to define what ‘well’ actually means. We will take a statistical perspective and choose the value
of β which makes the observed training data y as likely as possible under the model—the so-called maximum
likelihood solution.
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2. Linear regression

Example 2.2: Car stopping distances

We will continue Example 2.1, and form the matrices X and y. Since we only have one input and one output, both
xi and yi are scalar. We get,

X =



1 4
1 5
1 5
1 5
1 5
1 7
1 7
1 8
...

...
1 39
1 39
1 40



, β =

[
β0
β1

]
, y =



4
2
4
8
8
7
7
8
...

138
110
134



. (2.7)

2.2.1. Maximum likelihood

Our strategy to learn the unknown parameters β from the training data T will be the maximum likelihood method.
The word ‘likelihood’ refers to the statistical concept of the likelihood function, and maximizing the likelihood
function amounts to finding the value of β that makes y as likely as possible to have been observed. That is, we
want to solve

maximize
β

p(y |X, β), (2.8)

where p(y |X, β) is the probability density of the data y given a certain value of the parameters β. We denote the
solution to this problem—the learned parameters—with β̂ = [β̂0 β̂1 · · · β̂p]T. More compactly, we write this as

β̂ = argmax
β

p(y |X, β). (2.9)

In order to have a notion of what ‘likely’ means, and thereby specify p(y |X, β) mathematically, we need to
make assumptions about the noise term ε. A common assumption is that ε follows a Gaussian distribution with
zero mean and variance σ2ε ,

ε ∼ N (0, σ2ε ). (2.10)

This implies that the conditional probability density function of the output Y for a given value of the input X = x
is given by

p(y |x, β) = N (y |β0 + β1x1 + · · ·+ βpxp, σ
2
ε ). (2.11)

Furthermore, the n observed training data points are assumed to be independent realizations from this statistical
model. This implies that the likelihood of the training data factorizes as

p(y |X, β) =
n∏
i=1

p(yi |xi, β). (2.12)

Putting (2.11) and (2.12) together we get,

p(y |X, β) = 1

(2πσ2ε )
n/2

exp

(
− 1

2σ2ε

n∑
i=1

(β0 + β1xi1 + · · ·+ βpxip − yi)2
)
. (2.13)

9



2. Linear regression

Recall from (2.8) that we want to maximize the likelihood w.r.t. β. However, since (2.13) only depends on β via
the sum in the exponent, and since the exponential is an increasing function, maximizing (2.13) is equivalent to
minimizing

n∑
i=1

(β0 + β1xi1 + · · ·+ βpxip − yi)2 . (2.14)

This is the sum of the squares of differences between each output data yi and the model’s prediction of that
output, β̂i = β0 + β1xi1 + · · ·+ βpxip. For this reason, minimizing (2.14) is usually referred to as least squares.

We will come back on how the values β̂0, β̂1, . . . , β̂p can be computed. Let us just first mention that it is also
possible—and sometimes a very good idea—to assume that ε is distributed as something else than a Gaussian
distribution. One can, for instance, assume that ε instead has a Laplace distribution, which instead would yield
the cost function

n∑
i=1

|β0 + β1xi1 + . . . βpxip − yi|, (2.15)

to minimize. It contains the sum of the absolute values of all differences (rather than their squares). The major
benefit with the Gaussian assumption (2.10) is that there is a closed-form solution available for β̂0, β̂1, . . . , β̂p,
whereas other assumptions on ε usually require more computationally expensive methods.

Remark 2.2. With the terminoloy we will introduce in the next chapter, we could refer to (2.13) as the likelihood
function, and use the notation `(β) for it.

Remark 2.3. It is not uncommon in the literature to skip the maximum likelihood motivation, and just state (2.14)
as a (somewhat arbitrary) cost function for optimization.

2.2.2. Least squares and the normal equations

By assuming that the noise/error ε has a Gaussian distribution (2.10), the maximum likelihood parameters β̂
are the solution to the optimization problem (2.14). We illustrate this by Figure 2.2, and write the least squares
problem using the compact matrix and vector notation (2.6) as

minimize
β0,β1,...,βp

‖Xβ − y‖22, (2.16)

where ‖ · ‖2 denotes the usual Euclidean vector norm, and ‖ · ‖22 its square. From a linear algebra point of view,
this can be seen as the problem of finding the closest (in an Euclidean sense) vector to y in the subspace of Rn
spanned by the columns of X. The solution to this problem is the orthogonal projection of y onto this subspace,
and the corresponding β̂ can be shown (appendix A) to be

β̂ = (XTX)−1XTy. (2.17)

Equation (2.17) is often referred to as the normal equation, and it is the solution to the least squares problem (2.14,
2.16). The fact that this closed-form solution exists is important, and is perhaps the reason for why least squares
has become very popular and widely used. As discussed, other assumptions on ε than Gaussian leads to other
problems than least squares, such as (2.15) (where no closed-form solution exists).

Remark 2.4. Note that if the columns of X are linearly independent and p = n − 1, X spans the entire Rn,
and a unique solution exists such that y = Xβ exactly, i.e., the model fits the training data perfectly. In this
situation (2.17) reduces to β = X−1y. It may appear as a desireable behavior that the model fits the data
perfectly, but it is often tightly connected to the problem of overfitting, as we will discuss in Section 2.5.
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Figure 2.2.: A graphical explanation of the least squares criterion: the goal is to choose the model (blue line) such that the
sum of the square (orange) of each error ε (green) is minimized. That is, the blue line is to be chosen so that the
amount of orange color is minimized. This motivates the name least squares.

Example 2.3: Car stopping distances

By inserting the matrices (2.7) from Example 2.2 into the normal equations (2.6), we obtain β̂0 = −20.1 and
β̂1 = 3.1. If we plot the resulting model, it looks like this:
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With this model, the predicted stopping distance for x? = 33 mph is ŷ? = 84 feet, and for x? = 45 mph it is
ŷ? = 121 feet.

2.3. Nonlinear transformations of the inputs

The reason for the word linear in the name ‘linear regression’ is that the output is modelled as a linear combination
of the inputs.2 We have, however, not made a clear definition of what an input is: if the speed is an input, then
why could not also the kinetic energy—it’s square—be considered as another input? The answer is that it can.
We can in fact make use of arbitrary nonlinear transformations of the “original” input variables as inputs in the
linear regression model. If we, for example, only have a one-dimensional input X , a simple linear regression
model is

Y = β0 + β1X + ε. (2.18)

2And also the constant 1, corresponding to the offset β0, which is why the name affine is sometimes used rather than linear.
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(a) The maximum likelihood solution with a 2nd order poly-
nomial in the linear regression model. As discussed,
the line is no longer straight (cf Figure 2.1). This is,
however, merely an artefact of the plot: in a three-
dimensional plot with each ‘new’ input (here, X and
X2) on the axes, it would still be an affine set.
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(b) The maximum likelihood solution with a 4th order poly-
nomial in the linear regression model. Note that a 4th or-
der polynomial contains 5 unknown coefficients, which
roughly means that we can expect the learned model to
fit 5 data ponts exactly (cf. Remark 2.4, p = n− 1).

Figure 2.3.: A linear regression model with 2nd and 4th order polynomials in the input X , as (2.19).

However, we can also extend the model with, for instance, X2, X3, . . . , Xp as inputs, and thus obtain a linear
regression model which is a polynomial in X ,

Y = β0 + β1X + β2X
2 + · · ·+ βpX

p + ε. (2.19)

Note that this is still a linear regression model since the unknown parameters appear in a linear fashion but
with X,X2, . . . , Xp as inputs. The parameters β̂ are still learned with the same methods, but the X matrix is
different for model (2.18) and (2.19).

Figure 2.3 shows an example of two linear regression model with transformed (polynomial) inputs. When
studying the figure one may ask how a linear regression model can result in a curved line? Are not a linear
regression models restricted to linear (or affine) straight lines? The answer is that it depends on the plot: What is
shown in Figure 2.3(a) is the two-dimensional plot with X,Y (the ‘original’ input), but a three-dimensional plot
with X,X2, Y (all transformed inputs) would still be an affine set. The same holds true also for Figure 2.3(b)
but in that case we would need a 5-dimensional plot.

Even though the model in Figure 2.3(b) is able to fit all data points exactly, it also suggests that higher order
polynomials might not always be very useful: the behavior of the model in-between and outside the data points
is rather peculiar, and not very well motivated by the data. High-order polynomials are for this reason rarely used
in practice in machine learning. An alternative and much more common nonlinear transformation is the so-called
radial basis function (RBF) kernel

Kc(x) = exp

(
−‖x− c‖

2
2

`

)
, (2.20)

i.e., a Gauss bell centered around c. It can be used, instead of polynomials, in the linear regression model as

Y = β0 + β1Kc1(X) + β2Kc2(X) + · · ·+ βpKcp(X) + ε. (2.21)

This model is can be seen as p ‘bumps’ located at c1, c2, . . . , cp, respectively. Note that the locations c1, c2, . . . , cp
as well as the length scale ` have to be decided by the user, and it is only the parameters β0, β2, . . . , βp which are
learned from data in linear regression. This is illustrated in Figure 2.4. RBF kernels are in general preferred over
polynomials since they have ‘local’ properties, meaning that a small change in one parameter mostly affects the
model only locally around that kernel, whereas a small change in one parameter in a polynomial model affects
the model everywhere.
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2. Linear regression

Example 2.4: Car stopping distances

We continue with Example 2.1, but this time we also consider the squared speed as an input, i.e., the inputs are now
X and X2. This gives the new matrices (cf. (2.7))

X =



1 4 16
1 5 25
1 5 25
...

...
...

1 39 1521
1 40 1600


, β =

β0β1
β2

 , y =



4
2
4
...

110
134


, (2.22)

and when we insert them into the normal equations (2.17), the new parameter estimates are β̂0 = 1.58, β̂1 = 0.42

and β̂2 = 0.07. (Note that also the value of β̂0 and β̂1 has changed, compared to the Example 2.3.) This new model
looks as
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With this model, the predicted stopping distance is now ŷ? = 87 feet for x? = 33 mph, and ŷ? = 153 for x? = 45
mph. This can be compared to Example 2.3, which gives different predictions. Based on the data alone we can not
say that this is the “true model”, but by visually comparing this model with Example 2.3, the extended model seems
to follow the data slightly better. A systematic method to choose between different models (other than just visually
comparing plots) is cross-validation, which is covered by James et al. (2013, Section 5.1).
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β
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Figure 2.4.: A linear regression model with RBF kernels (2.21). Each kernel (dashed gray lines) is located at c1, c2, c3 and
c4, respectively. When the model is learned from data, the parameters β0, β1, . . . , βp are chosen such that the
sum of all kernels (solid blue line) is fitted to the data in, e.g., a least square sense.

Polynomials and RBF kernels are just two particular special cases, we can of course consider any nonlinear
transformation of the inputs.To distinguish the ‘original’ inputs from the ‘new’ transformed inputs, the term
features is often used for the latter. To decide which features to use one approach is to compare competing
models (with different features) using cross-validation; see James et al. 2013, Section 5.1.
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2. Linear regression

2.4. Qualitative input variables

The regression problem is characterized by a quantitative output3 Y , but the nature of the inputs X is arbitrary.
We have so far only discussed the case of quantitative inputs X , but qualitative inputs are perfectly possible as
well. Before we discuss how to handle qualitative input variables, let us have a look at when a variable in general
is to be considered as quantiative or qualitative, respectively:

Variable type Example Handle as

Numeric and continuous-valued 32.23 km/h, 12.50 km/h, 42.85 km/h Quantitative

Numeric, discrete-valued but has a natural ordering 0 children, 1 child, 2 children Quantitative

Numeric, discrete-valued but lacks a natural ordering 1 = Sweden, 2 = Denmark, 3 = Norway Qualitative

Non-numeric Uppsala University, Stockholm University,
Lund University

Qualitative

The distinction is, however, somewhat arbitrary, and there is not always a clear answer: one could for instance
argue that having no children is something qualitatively different than having children, and use the qualitative
variable “children: yes/no”, instead of “0, 1 or 2 children”. In a similar fashion continuous variables can be
thresholded into bins (positive/negative, e.g.), and thereby be transformed into qualitative ones. In the end, it is a
design choice which variables are considered as qualitative and quantitative, respectively.

Assume that we have a qualitative input variable that only takes two different values (or levels, classes), which
we call type A and type B. We can then create a dummy variable X as

X =

{
0 if type A
1 if type B

(2.23)

and use this variable in the linear regression model. This effectively gives us a linear regression model which
looks like

Y = β0 + β1X + ε =

{
β0 + ε if type A
β0 + β1 + ε if type B

(2.24)

The choice is somewhat arbitrary, and type A and B can of course be switched. Other choices, such as X = 1 or
−1, are also possible. This approach can be generalized to qualitative input variables which take more than two
values, let us say type A, B, C and D. With four different values, we create four minus one dummy variables as

X1 =

{
1 if type B
0 if not type B

, X2 =

{
1 if type C
0 if not type C

, X3 =

{
1 if type D
0 if not type D

(2.25)

which, altogether, gives the linear regression model

Y = β0 + β1X1 + β2X2 + β3X3 + ε =


β0 + ε if type A
β0 + β1 + ε if type B
β0 + β2 + ε if type C
β0 + β3 + ε if type D

(2.26)

Qualitative inputs can be handled similarly in other problem and models as well, such as logistic regression,
LDA, kNN, deep learning, etc.

3If the output variable is qualitative, then we have a classification—and not a regression—problem.
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2.5. Regularization

Even though the linear regression model at a first glance (cf. Figure 2.1) may seem as a fairly rigid and non-
flexible model, it is not necessarily so. If the inputs are extended with nonlinear transformations as in Figure 2.3
or 2.4, or the number of inputs p is large and the number of data points n is small, one may experience overfitting.
If considering data as consisting of ‘signal’ (the actual information) and ‘noise’ (measurement errors, irrelevant
effects, etc), the term overfitting indicates that the model is fitted not only to the ‘signal’ but also to the ‘noise’.
An example of overfitting is given in Example 2.5, where a linear regression model with p = 8 RBF kernels is
learned from n = 9 data points. Even though the model follows all data points very well, we can intuitively judge
that the model is nor particularly useful: neither the interpolation (between the data points) nor the extrapolation
(outside the data range) appears sensible. Note that using p = n − 1 is an extreme case, but the conceptual
problem with overfitting is often present also in less extreme situations.

A useful approach to handle overfitting is regularization. The idea behind regularization can be introduced
as ‘keeping the parameters β small unless the data really convinces us otherwise’, or alternatively ‘if a model
with small values of the parameters β fits the data almost as well as a model with larger parameter values, the
one with small parameter values should be preferred’. There are several ways to implement this mathematically,
which leads to slightly different solutions. We will focus on the so-called ridge regression and LASSO.

The concept of regularization extends well beyond linear regression and it can be used when working with
other types of problems and models as well.

2.5.1. Ridge regression

In ridge regression (also known as Tikhonov regularization, L2 regularaization, or weight decay) the least squares
criterion (2.16) is replaced with the modified minimization problem

minimize
β0,β1,...,βp

‖Xβ − y‖22 + γ‖β‖22. (2.27)

The value γ ≥ 0 is referred to as a regularization parameter and this has to be chosen by the user. For γ = 0 we
recover the original least squares problem (2.16), whereas if we let γ →∞ we will force all parameters βj to
approach 0. A good choice of γ is in most cases somewhere in between, and depends on the actual problem. It
can either be found by manual tuning, or in a more systematic fashion using cross-validation.

It is actually possible to derive a closed-form solution for (2.27), akin to (2.17), namely

β̂ = (XTX+ γIp+1)
−1XTy, (2.28)

where Ip+1 is the identity matrix of size p+ 1× p+ 1.

2.5.2. LASSO

With LASSO (an abbreviation for Least Absolute Shrinkage and Selection Operator), or equivalently L1 regular-
ization, the least squares criterion (2.16) is replaced with

minimize
β0,β1,...,βp

‖Xβ − y‖22 + γ‖β‖1, (2.29)

where ‖ · ‖1 is the Manhattan norm. Contrary to ridge regression, there is no closed-form solution available
for (2.29), but it is a convex problem can be solved efficiently by numerical optimization.

As for ridge regression, the regularization parameter γ has to be chosen by the user: γ = 0 gives the least
squares problem and γ → ∞ gives β = 0. Between these extremes, however, LASSO and ridge regression
will result in different solutions: whereas ridge regression pushes all parameters β0, β1, . . . , βp towards small
values, LASSO tends to favor so-called sparse solutions where only a few of the parameters are non-zero, and
the rest are exactly 0. Thus, the LASSO solution can effectively ‘switch some of the inputs off’ by setting the
corresponding parameter to zero and it can therefore be used as an input (or feature) selection method.
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Example 2.5: Regularization in a linear regression RBF model

We have the problem of fitting a linear regression model
with p = 8 radial basis function kernels (blue line) to
n = 9 data points (black dots). Since we have p = n−1,
we can expect the model to fit the data perfectly. How-
ever, as we see in (a) to the right, the model overfits,
meaning that the model adapts too much to the data
and has a ‘strange’ behavior between the data points.
As a remedy to this, we can use ridge regression (b) or
LASSO (c). Even though the final models with ridge
regression and LASSO look rather similar, their param-
eters β̂ are different: the LASSO solution effectively
only makes use of 5 (out of 8) radial basis functions.
This is referred to as a sparse solution. Which approach
to be preferred depends, of course, on the specific prob-
lem.
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(a) The model learned with least squares (2.16). Even
though the model follows the data exactly, we should
typically not be happy with this model: neither the
behavior between the data points nor outside the range
is plausible, but is only an effect of overfitting, in that
the model is adapted ‘too well’ to the data. The
parameter values β̂ are around 30 and −30.
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(b) The same model, this time learned with ridge
regression (2.27) with a certain value of γ. Despite
not being perfectly adapted to the training data, this
model appears to give a more sensible trade-off
between fitting the data and avoiding overfitting than
(a), and is probably more useful in most situations. The
parameter values β̂ are now roughly evenly distributed
in range from −0.5 to 0.5.
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(c) The same model again, this time learned with
LASSO (2.29) with a certain value of γ. Again, this
model is not perfectly adapted to the training data, but
appears to have a more sensible trade-off between
fitting the data and avoiding overfitting than (a), and is
probably also more useful than (a) in most situations.
In contrast to (b), however, 3 (out of 9) parameters are
in this model exactly 0, and the rest are in the range
from −1 to 1.
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2.6. Linear regression in R

The main linear regression command in R is lm(). It takes a formula and a data frame as input, and returns an
object which can be used by the predict command. We illustrate its use in Example 2.6.

R example 2.6: Linear regression using the lm() command

We consider the problem of predicting the carbon dioxide (CO2) emission per capita in different countries, using
the gross domestic product (GDP) per capita and the internet access as inputs. We use the 2015 data from
• The European Union Emission database, http://edgar.jrc.ec.europa.eu/overview.php?v=CO2ts_pc1990-2015,

• United Nations Statistics Division, https://unstats.un.org/unsd/snaama/dnlList.asp,

• International Telecommunications Union, http://data.un.org/DocumentData.aspx?id=374,

which we have compiled into a single file available at the course homepage as emissiondata.csv.
We start by loading the data into R as a data frame using the command read.table()

> emissiondata <- read.table("emissiondata.csv", header = TRUE)

We can look at the data frame by simply typing its name in the terminal,

> emissiondata
Country Emission GDP Internet

1 Argentina 4.40380219 14564.5013 54.1
2 Armenia 1.53652039 3489.1276 41.9
3 Australia 18.62191971 51352.1972 83.5
4 Austria 8.68896479 44117.6911 80.6
...
84 United_Kingdom 6.15806813 44162.3629 89.8
85 United_States_of_America 16.07446115 56053.8412 74.7
86 Uruguay 2.15499169 15573.8085 61.5
87 Venezuela 5.74024779 11068.8722 49.1

that is, emissiondata contains 87 data points of the variables Country (the name of the country), Emission
(metric tons CO2 emmited per capita and year), GDP (Gross domestic product per capita in USD) and Internet
(percentage of individuals using internet). Before we start using the lm() command, we first divide the data
randomly into one training data set (to be used for learning) and one test data set (to be used for evaluation), so that
we can evaluate and get an idea of how good our model is.

> train <- sample(x=1:nrow(emissiondata), size=60, replace=FALSE)
> emissiondata.train <- emissiondata[train,]
> emissiondata.test <- emissiondata[-train,]

The country name itself is probably not of any help in predicting the CO2 emissions, but we start with using GDP
and Internet as inputs in a linear regression model

> model <- lm(formula=Emission~GDP+Internet,data=emissiondata.train)

The argument formula specifies the output (left of ~) and inputs (right of ~) separated by +. The variable names
here have to be the same as the ones used in the data frame provided as data, which specifies what data set to be
used to learn the model. To evaluate the model, we try to predict the emission for the test data set,

> model.prediction <- predict(model,newdata=emissiondata.test)
> model.rmse <- sqrt(mean((model.prediction-emissiondata.test$Emission)^2))

and also compute the root mean square error (RMSE) for the predictions model1.rmse, where we compare
the predictions model1.prediction to the emissions in the data emissiondata.test$Emission. This
gives an idea of how good the model is for prediction.
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2.6.1. Nonlinear transformation of inputs

If we want to try different features in the linear regression model, we can simply write it as the formula
argument to the lm() command. If the data frame has three variables Y, X1 and X2, encoding Y , X1 and X2

respectively, one can write:

• formula=Y~X1+X2 to get Y = β0 + β1X1 + β2X2 + ε.

• formula=Y~X1+X2-1 to get Y = β1X1 + β2X2 + ε (no intercept term).

• formula=Y~X1+X2+X1:X2 to get Y = β0 + β1X1 + β2X2 + β3X1X2 + ε.

• formula=Y~X1*X2 to also get Y = β0 + β1X1 + β2X2 + β3X1X2 + ε.

• formula=Y~X1+log(X2) to get Y = β0 + β1X1 + β2 log(X2) + ε.

• formula=Y~X1+I(X2^2) to get Y = β0 + β1X1 +X2
2 + ε

(the I() is needed since ^2 otherwise has another meaning).

2.6.2. Qualitative inputs

The lm() command has built-in support for qualitative input variables and automatically creates dummy
variables for non-numeric inputs (Section 2.4). To study which dummy variables are used, use the function
contrasts() like contrasts(data$X). To force a numeric input to be handled as a qualitative input (if
the meaning of the numbers are different classes rather than a natural ordering), use the command as.factor()
like formula=Y~as.factor(X).

2.6.3. Regularization

The lm() command has no support for regularization. Some commands for regularized linear regression are
instead

• lm.ridge() for ridge regression, which works similarly to the lm() command.

• glmnet() for ridge regression as well as LASSO. It has, however, a different syntax than lm(), and
determines the regularization parameter automatically using cross-validation.

2.7. Further reading

Linear regression has now been used for well over 200 years. It was first introduced independently by Adrien-
Marie Legendre in 1805 and Carl Friedrich Gauss in 1809 when they discovered the method of least squares. The
topic of linear regression is due to its importance described in many textbooks in statistics and machine learning.
Just to mention a few we have Bishop (2006), Gelman et al. (2013), Hastie, Tibshirani, and Friedman (2009), and
Murphy (2012). While the basic least squares technique has been around for a long time, its regularized versions
a much younger. Ridge regression was introduced independently in statistics by Hoerl and Kennard (1970) and
in numerical analysis under the name of Tikhonov regularization. The LASSO was first introduced in 1996 by
Tibshirani (1996). The recent monograph by Hastie, Tibshirani, and Wainwright (2015) covers the development
relating to the use of sparse models and the LASSO.
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3. Logistic regression

Logistic regression is a parametric model for classification. Since we usually talk about regression and classifica-
tion as two different types of problems, the name “logistic regression” might be confusing at first. The reason for
this name is that the method makes use of a linear regression model, the output of which is transformed to the
interval (0, 1) by the so called logistic function. This value is then interpreted as class probability.

This chapter contains a brief presentation of logistic regression and is to be viewed as a complement to James
et al. 2013, Chapter 4.3. Specifically, in Section 3.1 we consider the binary classification setting and this material
is mostly covered in James et al. 2013, Chapter 4.3, who also provide a more elaborate treatment. The exceptions
are equations (3.6–3.9) which are not given in James et al. 2013. Note that we use the symbol q to denote
the conditional class probabilities—see (3.1) and (3.10)—for which James et al. 2013 use the symbol p. We
recommend reading James et al. 2013, Chapter 4.3 first and then continuing with Section 3.1 of these lecture
notes. Section 3.2 then generalizes the logistic regression model to the the multi-class setting. This material is
not covered by James et al. 2013. We use the multi-class logistic regression model primarily as a stepping stone
to later derive a deep learning classification model in chapter 4.

3.1. Logistic regression for binary classification

In a binary classification problem the output has two possible values, which we can encode as 0 and 1, i.e. Y ∈
{0, 1}. Recall that the (optimal) Bayes classifier is based on the conditional class probabilities Pr(Y = 1 |X)
and Pr(Y = 0 |X). Naturally, these probabilities depend on the input X . For notational convenience we define
the function q(X) to be the class-1 probability:

q(X)
def
= Pr(Y = 1 |X), (3.1)

and consequently Pr(Y = 0 |X) = 1 − q(X). A classifier can thus be constructed based on a model for the
function q(X).

Since q(X) corresponds to a probability it is constrained to the interval (0, 1)1. It is therefore natural to require
that any model that we construct for q(X) is also constrained to this interval. To accomplish this it is useful to
consider a transformation of q(X) which enforces the constraint. To this end, we start by defining the odds as the
ratio between the two class probabilities,

q(X)

1− q(X)
∈ (0,∞). (3.2)

Note that the image of the interval (0, 1) by this transformation is the positive real line. Thus, if we then take the
logarithm of this expression we obtain the log-odds

log
q(X)

1− q(X)
∈ (−∞,∞) (3.3)

which takes values on the whole real line.
The logistic regression model is based on using a linear regression model for the log-odds. That is, we model

log
q(X;β)

1− q(X;β)
= β0 +

p∑
j=1

βjXj , (3.4)

1We exclude the boundary points 0 and 1 to avoid having to work with the extended real line (including the points ±∞) below. The
probability of class 1 under a logistic regression model will never be exactly zero or one, so this restriction does not matter in practice.
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3. Logistic regression
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Figure 3.1.: Logistic function.

where we have added an explicit dependence on the unknown parameters β in the model. In the sequel we will
use the notational convention X = [1, X1, . . . , Xp]

T, i.e. the input vector X is assumed to contain the constant
1 in its first position (cf. the notation (2.4) used for linear regression). This means that we can write

β0 +

p∑
j=1

βjXj = βTX.

Since the log-odds transformation is invertible, we can equivalently write the model (3.4) as

q(X;β) =
eβ

TX

1 + eβTX
, (3.5)

which is precisely the logistic function applied to the linear activation βTX . The logistic function, shown in
Figure 3.1 maps the real line to the interval (0, 1) as needed.

Learning a logistic regression model, i.e. estimating the parameters β, is often done by maximum likelihood.
The logistic regression model presented above directly provides a model of the data likelihood. Given a training
data set T = {(x1, y1), . . . , (xn, yn)} we can thus write the likelihood of the observed data as

`(β)
def
= Pr(Y1 = y1, . . . , Yn = yn |X1 = x1, . . . , Xn = xn;β)

=
n∏
i=1

Pr(Yi = yi |Xi = xi;β) independence

=
∏
i:yi=1

q(xi;β)
∏
i:yi=0

(1− q(xi;β)) definition of q(X;β)

(3.6)

Taking the logarithm we get the log-likelihood function

log `(β) =
∑
i:yi=1

log q(xi;β) +
∑
i:yi=0

log(1− q(xi;β))

=

n∑
i=1

{yi log q(xi;β) + (1− yi) log(1− q(xi;β))} using I(yi = 1) = yi

=

n∑
i=1

{
yiβ

Txi − log
(
1 + eβ

Txi
)}

logistic regression model

(3.7)
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3. Logistic regression

We then seek to compute the maximum likelihood estimate of β as

β̂ = argmax
β

log `(β). (3.8)

As usual we work with the logarithm of the likelihood rather than with the likelihood itself for improved numerical
stability. This is possible due to the monotonicity of the logarithm, implying that the maximizing argument β̂ is
the same for the log-likelihood and for the likelihood.

To maximize the log-likelihood we set the gradient to zero,

∇β log `(β) =
n∑
i=1

xi

(
yi −

eβ
Txi

1 + eβTxi

)
= 0. (3.9)

Note that we use the convention xi =
(
1 xi1 · · · xip

)T and that the equation above is vector-valued, i.e. we
have a system of p+ 1 equations to solve (with p+ 1 unknown elements of the vector β). Contrary to the linear
regression model (with Gaussian noise) discussed in Section 2.2.1, this maximum likelihood problem results in a
nonlinear system of equations, lacking a general closed form solution. Instead, we are forced to use a numerical
solver. The standard choice is to use the Newton–Raphson algorithm (equivalent to the iteratively reweighted
least squares algorithm), see e.g. Hastie, Tibshirani, and Friedman 2009, Chapter 4.4.

3.2. Logistic regression for multi-class problems

The logistic regression model can be extended to the multi-class classification problem by modeling the log-odds
w.r.t. a chosen reference class as linear regressions. Assume that there are K possible classes, Y ∈ {1, . . . ,K},
and define the conditional class probabilities

qk(X)
def
= Pr(Y = k |X) k = 1, . . . ,K. (3.10)

If we select class K as the reference class, then the model is defined via the K − 1 log-odds between the first
K − 1 classes and class K, i.e.

log
q1(X; θ)

qK(X; θ)
= β01 +

p∑
j=1

βj1Xj ,

log
q2(X; θ)

qK(X; θ)
= β02 +

p∑
j=1

βj2Xj ,

...

log
qK−1(X; θ)

qK(X; θ)
= β0(K−1) +

p∑
j=1

βj(K−1)Xj .

(3.11)

The choice of reference class is in fact arbitrary and we obtain an equivalent model if the log-odds are defined
using any of the K classes as reference. Note that the model has in total (K − 1) × (p + 1) parameters,
β01, . . . , βp1, . . . , β0(K−1), . . . , βp(K−1) which we collect in the parameter vector θ.

Just as in the 2-class setting we can invert (3.11) to compute the class probabilities, using the fact that∑K
k=1 qk(X; θ) = 1, which results in

qk(X; θ) =
exp

(
β0k +

∑p
j=1 βjkXj

)
1 +

∑K−1
l=1 exp

(
β0l +

∑p
j=1 βjlXj

) , k = 1, . . . ,K − 1

qK(X; θ) =
1

1 +
∑K−1

l=1 exp
(
β0l +

∑p
j=1 βjlXj

) . (3.12)

21



3. Logistic regression

Based on these expressions we can derive an expression for the log-likelihood of the observed training data
analogously to (3.7), which can then be maximized using numerical optimization.

Before deriving the expression for the log-likelihood, however, we discuss an alternative parameterization of
the model which is also common in practice, in particular as a component of deep neural networks (see chapter 4).
This parameterization is based on the so called softmax function which is a mapping from RK to (0, 1)K , such
that its elements sum to one2. Specifically, the softmax function applied to the vector Z = [Z1, . . . , ZK ]

T is
given by

softmax(Z) =
1∑K

l=1 e
Zl
[eZ1 , . . . , eZK ]T. (3.13)

Using the softmax function we can model the class probabilities qk(X) as

qk(X; θ) = [softmax(Z)]k (3.14)

where

Zk = β0k +

p∑
j=1

βjkXj , k =1, . . . ,K (3.15)

and [softmax(Z)]k =
eZk∑K
l=1 e

Zl
is the kth output from the softmax function.

A difference between the two parameterizations, one based on the log-odds as in (3.11) and one based on
the softmax function as in (3.14), is that the latter is an over-parameterization of the K probabilities. Indeed,
counting the total number of parameters in (3.15) we see that the dimension of θ in this parameterization is
K × (p+ 1). Hence, the latter paramterization has an additional p+ 1 parameters which are “not needed”. The
explanation lies in the fact that the softmax function is shift-invariant, i.e. softmax(Z + c) = softmax(Z) for
any constant c which is added to all elements of the vector Z. Consequently, we obtain the same model as in
(3.14) if we shift all elements of the vector Z by, for instance, the value ZK . This effectively turns class K into a
“reference class” and (3.14) reduces to (3.11) (with appropriately redefined parameters). In practice, however, the
over-parameterization of the softmax model is typically not an issue and it is common to use model defined via
(3.14) and (3.15) directly.

For either parameterization of the class probabilities qk, the model parameters can be found by maximizing the
likelihood of the observed training data T = {(xi, yi)}ni=1. The log-likelihood is derived analogously to (3.7)
for the binary classification problem and is given by

log `(θ) =
n∑
i=1

log qyi(xi; θ) =
n∑
i=1

K∑
k=1

I(yi = k) log qk(xi; θ). (3.16)

Remark 3.1 (One-hot encoding). For the binary problem we used the convenient encoding yi ∈ {0, 1} which
means that I(yi = 1) = yi. This allowed us to express the likelihood on a simple form, without having to use
the indicator function explicitly; see (3.7). It is common to use a similar “trick” also for the K-class problem in
order to express the log-likelihood (3.16) on a simpler form. However, this requires an alternative encoding of
the K classes, referred to as one-hot encoding. Instead of letting Y be an integer value in the range {1, . . . ,K},
one-hot encoding represents the kth class by a vector Y = [Y1, . . . , YK ]

T where Yk = 1 and Yj = 0 for j 6= k.
That is, all elements of the vector are zero except one and the position of the non-zero element determines the
class. For example, if there are three possible classes we encode the first class as Y = [1, 0, 0]T, the second class
as Y = [0, 1, 0]T, and the third class as Y = [0, 0, 1]T. Note that there is a one-to-one relationship between
the one-hot encoding and the previously used integer-based encoding and we will use both representations
interchangeably. With the one-hot encoding of the training outputs we can write the log-likelihood (3.16) as

log `(θ) =

n∑
i=1

K∑
k=1

yik log qk(xi; θ), (3.17)

where qk(X; θ) is given by either (3.12) or (3.14).
2In mathematical terms, the softmax function maps RK to the (K − 1)-dimensional probability simplex.
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4. Deep learning and neural networks

Neural networks can be used for both regression and classification, and they can be seen as an extension of linear
regression and logistic regression, respectively. Traditionally neural networks with one so-called hidden layer
have been used and analysed, and several success stories came in the 1980s and early 1990s. In the 2000s it was,
however, realized that deep neural networks with several hidden layers, or simply deep learning, are even more
powerful. With the combination of new software, hardware, parallel algorithms for training and a lot of training
data, deep learning has made a major contribution to machine learning. Deep learning has excelled in many
applications, including image classification, speech recognition and language translation. New applications,
analysis, and algorithmic developments to deep learning are published literally every day.

We will start in Section 4.1 by generalizing linear regression to a two-layer neural network (i.e., a neural
network with one hidden layer), and generalize it further to a deep neural network. We thereafter leave regression
and look at the classification setting in Section 4.2. In Section 4.3 we present a special neural network tailored
for images and finally, we turn to the training of neural networks in Section 4.4.

4.1. Neural networks for regression

A neural network is a nonlinear function that describes the output variable Y as a nonlinear function of its input
variables

Y = f(X1, . . . , Xp; θ) + ε, (4.1)

where ε is an error term and the function f is parametrized by θ. Such a nonlinear function can be parametrized
in many ways. In a neural network, the strategy is to use several layers of linear regression models and nonlinear
activation functions. We will explain this carefully in turn below. For the model description it will be convenient
to define Z as the output without the noise term ε,

Z = f(X1, . . . , Xp; θ). (4.2)

4.1.1. Generalized linear regression

We start the description with a graphical illustration of the linear regression model

Z = β01 + β1X1 + β2X2 + · · ·+ βpXp, (4.3)

which is shown in Figure 4.1a. Each input variable Xi is represented with a node and each parameter βi with
a link. Furthermore, the output Z is described as the sum of all terms βiXi. Note that we use 1 as the input
variable corresponding to the offset term β0.

To describe nonlinear relationships between X and Z we introduce a nonlinear scalar function called the
activation function σ : R → R. The linear regression model (4.3) is now modified into a generalized linear
regresssion model where the linear combination of the inputs is squashed through the (scalar) activation function

Z = σ
(
β0 + β1X1 + β2X2 + · · ·+ βpXp

)
. (4.4)

This extension to the generalized linear regression model is visualized in Figure 4.1b.
Common choices for activation function are the logistic function and the rectified linear unit (ReLU). These

are illustrated in Figure 4.2a and Figure 4.2b, respectively. The logistic function has already been used in (3.5)
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Figure 4.1.: Graphical illustration of a linear regression model (Figure 4.1a), and a generalized linear regression model
(Figure 4.1b). In Figure 4.1a, the output Z is described as the sum of all terms β0 and {βiXi}pi=1, as in (4.3).
In Figure 4.1b, the circle denotes addition and also transformation through the activation function σ, as in (4.4).
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Figure 4.2.: Two common activation functions used in neural networks. The sigmoid function (Figure 4.2a), and the rectified
linear unit (Figure 4.2b).

in the context of logistic regression. The logistic function is affine close to x = 0 and saturates at 0 and 1 as x
decreases or increases. The ReLU is even simpler. The function is the identity function for positive inputs and
equal to zero for negative inputs.

The logistic function used to be the standard choice of activation function in neural networks for many years,
whereas the ReLU has gained in popularity (despite its simplicity!) during recent years and it is now the standard
choice in most neural network models.

The generalized linear regression model (4.4) is very simple and is itself not capable of describing very
complicated relationships between the input X and the output Z. Therefore, we make two further extensions
to increase the generality of the model: We will first make use of several generalized linear regression models
to build a layer (which will lead us to the two-layer neural network) and then stack these layers in a sequential
construction (which will result in a deep neural network, or simply deep learning).

4.1.2. Two-layer neural network

In (4.4), the output is constructed by one scalar regression model. To increase its flexibility and turn it into a
two-layer neural network, we instead let the output be a sum of M generalized linear regression models, each of
which has its own parameters. The parameter for the ith regression model are β0i, . . . , βpi and we denote its
output by Hi,

Hi = σ (β0i + β1iX1 + β2iX2 + · · ·+ βpiXp) , i = 1, . . . ,M. (4.5)

These intermediate outputs Hi are so-called hidden units, since they are not the output of the whole model. The
M different hidden units {Hi}Mi=1 instead act as input variables to an additional linear regression model

Z = β0 + β1H1 + β2H2 + · · ·+ βMHM . (4.6)
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Figure 4.3.: A two-layer neural network, or equivalently, a neural network with one intermediate layer of hidden units.

To distinguish the parameters in (4.5) and (4.6) we add the superscripts (1) and (2), respectively. The equations
describing this two-layer neural network (or equivalently, neural network with one layer of hidden units) are thus

H1 = σ
(
β
(1)
01 + β

(1)
11 X1 + β

(1)
21 X2 + · · ·+ β

(1)
p1 Xp

)
,

H2 = σ
(
β
(1)
02 + β

(1)
12 X1 + β

(1)
22 X2 + · · ·+ β

(1)
p2 Xp

)
, (4.7a)

...

HM = σ
(
β
(1)
0M + β

(1)
1MX1 + β

(1)
2MX2 + · · ·+ β

(1)
pMXp

)
,

Z = β
(2)
0 + β

(2)
1 H1 + β

(2)
2 H2 + · · ·+ β

(2)
M HM . (4.7b)

Extending the graphical illustration from Figure 4.1, this model can be depicted as a graph with two-layers of
links (illustrated using arrows), see Figure 4.3. As before, each link has a parameter associated with it. Note that
we include an offset term not only in the input layer, but also in the hidden layer.

4.1.3. Matrix notation

The two-layer neural network model in (4.7) can also be written more compactly using matrix notation, where
the parameters in each layer are stacked in a weight matrix W and an offset vector1 b as

b(1) =
[
β
(1)
01 . . . β

(1)
0M

]
, W (1) =


β
(1)
11 . . . β

(1)
1M

... . . .
...

β
(1)
p1 . . . β

(1)
pM

 , b(2) =
[
β
(2)
0

]
, W (2) =

β
(2)
1
...

β
(2)
M

 . (4.8)

The full model can then be written as

H = σ
(
W (1)TX + b(1)T

)
, (4.9a)

Z =W (2)TH + b(2)T, (4.9b)

where we have also stacked the components in X and H as X = [X1, . . . , Xp]
T and H = [H1, . . . , HM ]T.

The activation function σ acts element-wise. The two weight matrices and the two offset vectors will be the

1The word “bias” is often used for the offset vector in the neural network literature, but this is really just a model parameter and not a
bias in the statistical sense. To avoid confusion we refer to it as an offset instead.
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4. Deep learning and neural networks

parameters in the model, which can be written as

θ =
[
vec(W (1))T vec(W (2))T b(1) b(2)

]T
. (4.10)

By this we have described a nonlinear regression model on the form Y = f(X; θ) + ε where f(X; θ) = Z
according to above. Note that the predicted output Z in (4.9b) depends on all the parameters in θ even though it
is not explicitly stated in the notation.

4.1.4. Deep neural network

The two-layer neural network is a useful model on its own, and a lot of research and analysis has been done for
it. However, the real descriptive power of a neural network is realized when we stack multiple such layers of
generalized linear regression models, and thereby achieve a deep neural network. Deep neural networks can
model complicated relationships (such as the one between an image and its class), and is one of the state-of-the-art
methods in machine learning as of today.

We enumerate the layers with index l. Each layer is parametrized with a weight matrix W (l) and an offset
vector b(l), as for the two-layer case. For example, W (1) and b(1) belong to layer l = 1, W (2) and b(2) belong
to layer l = 2 and so forth. We also have multiple layers of hidden units denoted by H(l−1). Each such layer
consists of Ml hidden units H(l) = [H

(l)
1 , . . . , H

(l)
Ml

]T, where the dimensions M1, M2, . . . can be different for
different layers.

Each layer maps a hidden layer H(l−1) to the next hidden layer H(l) as

H(l) = σ(W (l)TH(l−1) + b(l)T). (4.11)

This means that the layers are stacked such that the output of the first layer H(1) (the first layer of hidden units)
is the input to the second layer, the output of the second layer H(2) (the second layer of hidden units) is the input
to the third layer, etc. By stacking multiple layers we have constructed a deep neural network. A deep neural
network of L layers can mathematically be described as (cf. (4.9))

H(1) = σ(W (1)TX + b(1)T),

H(2) = σ(W (2)TH(1) + b(2)T),

... (4.12)

H(L−1) = σ(W (L−1)TH(L−2) + b(L−1)T),

Z =W (L)TH(L−1) + b(L)T.

A graphical representation of this model is represented in Figure 4.4.
The weight matrix W (1) for the first layer l = 1 has the dimension p ×M1 and the corresponding offset

vector b(1) the dimension 1 × M1. In deep learning it is common to consider applications where also the
output is multi-dimensional Z = [Z1, . . . , ZK ]T. This means that for the last layer the weight matrix W (L)

has the dimension ML−1 × K and the offset vector b(L) the dimension 1 × K. For all intermediate layers
l = 2, . . . , L− 1, W (l) has the dimension Ml−1 ×Ml and the corresponding offset vector 1×Ml.

The number of inputs p and the number of outputs K are given by the problem, but the number of layers L
and the dimensions M1, M2, . . . are user design choices that will determine the flexibility of the model.

4.1.5. Learning the network from data

Analogously to the parametric models presented earlier (e.g. linear regression and logistic regression) we need to
learn all the parameters in order to use the model. For deep neural networks the parameters are

θ =
[
vec(W (1))T vec(W (2))T · · · vec(W (L))T b(1)T b(2) · · · b(L)

]T
(4.13)
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Figure 4.4.: A deep neural network with L layers. Each layer is parameterized with W (l) and b(l).

The wider and deeper the network is, the more parameters there are. Practical deep neural networks can easily
have in the order of millions of parameters and these models are therefore also extremely flexible. Hence, some
mechanism to avoid overfitting is needed. Regularization such as ridge regression is common (cf. Section 2.5),
but there are also other techniques specific to deep learning; see further Section 4.4.4. Furthermore, the more
parameters there are, the more computational power is needed to train the model. As before, the training data T
consists of n samples of the input X and the output Y , {(xi, yi)}ni=1.

For a regression problem we typically start with maximum likelihood and assume Gaussian noise ε ∼ N (0, σ2ε ),
and thereby obtain the square error loss function as in Section 2.2.1,

θ̂ = argmin
θ

1

n

n∑
i=1

L(xi, yi, θ) where L(xi, yi, θ) = ‖yi − f(xi; θ)‖2 = ‖yi − zi‖2. (4.14)

This problem can be solved with numerical optimization, and more precisely stochastic gradient descent. This is
described in more detail in Section 4.4.

From the model, the parameters θ, and the inputs {xi}ni=1 we can compute the predicted outputs {zi}ni=1 using
the model zi = f(xi; θ). For example, for the two-layer neural network presented in Section 4.1.2 we have

hTi = σ(xTi W
(1) + b(1)), (4.15a)

zTi = hTi W
(2) + b(2). (4.15b)

In (4.15) the equations are transposed in comparison to the model in (4.9). This is a small trick such that we
easily can extend (4.15) to include multiple data points i. Similar to (2.4) we stack all data points in matrices,
where each data point represents one row

Y =

y
T
1
...
yTn

 , X =

x
T
1
...
xTn

 , Z =

z
T
1
...
zTn

 , and H =

h
T
1
...
hTn

 . (4.16)

We can then write (4.15) as

H = σ(XW (1) + b(1)), (4.17a)

Z = HW (2) + b(2), (4.17b)

where we also have stacked the predicted output and the hidden units in matrices. This is also how the model
would be implemented in code. In Tensorflow for R, which will be used in the laboratory work in the course, it
can be written as
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H <- tf$sigmoid(tf$matmul(X, W1) + b1)
Z <- tf$matmul(H, W2) + b2

Note that in (4.17) the offset vectors b1 and b2 are added and broadcasted to each row. See more details regarding
implementation of a neural network in the instructions for the laboratory work.

28



4. Deep learning and neural networks

... ...
...

...
...

...

...
...

...

1

X1

Xp

1

H
(1)
1

H
(1)
M1

σ

σ

σ

1

H
(2)
1

H
(2)
M2

σ

σ

σ

1

H
(L−2)
1

H
(L−2)
ML−2

σ

σ

σ

1

H
(L−1)
1

H
(L−1)
ML−1

σ

σ

σ

Z1

ZK

q1(X; θ)

qK(X; θ)

. . .

Input
variables

Hidden
units

Hidden
units

Hidden
units

Hidden
units

Logits Outputs

Layer 1
W (1) b(1)

Layer 2
W (2) b(2)

Layer L-1
W (L−1) b(L−1)

Layer L
W (L) b(L)

Softmax

Figure 4.5.: A deep neural network with L layers for classification. The only difference to regression (Figure 4.4) is the
softmax transformation after layer L.

4.2. Neural networks for classification

Neural networks can also be used for classification where we have qualitative outputs Y ∈ {1, . . . ,K} instead
of quantitative. In Chapter 3 we extended linear regression to logistic regression by adding the logistic function to
the output. In the same manner we can extend the neural network presented in the last section to a neural network
for classification. In doing this extension, we will use the multi-class version of logistic regression presented in
Section 3.2, and more specifically the softmax parametrization given in (3.13), repeated here for convenience

softmax(Z) =
1∑K

j=1 e
Zj

[
eZ1 · · · eZK

]T
. (4.18)

The softmax function acts as an additional activation function on the final layer of the neural network. In
addition to the regression network in (4.12) we add the softmax function at the end of the network as

...

Z =W (L)TH(L−1) + b(L)T, (4.19a)

q1(X; θ) = [softmax(Z)]1,

... (4.19b)

qK(X; θ) = [softmax(Z)]K .

The softmax function maps the output of the last layerZ1, . . . , ZK to the class probabilities q1(X; θ), . . . , qK(X; θ),
see also Figure 4.5 for a graphical illustration. The inputs to the softmax function, i.e. the variables Z1, . . . , ZK ,
are referred to as logits. Each element qk(X; θ) serves as a model for the conditional class probability
Pr(Y = k |X), as for logistic regression in Section 3.2.

Note that the softmax function does not come as a layer with additional parameters, it only transforms the
previous output [Z1, . . . , ZK ] ∈ RK to [q1(X; θ), . . . , qK(X; θ)] ∈ [0, 1]K such that they can be interpreted as
probabilities. Also note that by construction of the softmax function, these values will sum to 1 regardless of the
values of [Z1, . . . , ZK ].

4.2.1. Learning classification networks from data

As before, the training data consists of n samples of inputs and outputs {(xi, yi)}ni=1. For the classification
problem we use the one-hot encoding for the output yi. This means that for a problem with K different classes,
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k = 1 k = 2 k = 3

yik 0 1 0
qk(xi; θA) 0.1 0.8 0.1

Cross-entropy:
L(xi, yi, θA) = −1 · log 0.8 = 0.22

k = 1 k = 2 k = 3

yik 0 1 0
qk(xi; θB) 0.8 0.1 0.1

Cross-entropy:
L(xi, yi, θB) = −1 · log 0.1 = 2.30

Figure 4.6.: Illustration of the cross-entropy between a data point yi and two different prediction outputs.

yi consists of K elements yi =
[
yi1 . . . yiK

]T. If a data point i belongs to class k then yik = 1 and yij = 0
for all j 6= k. See more about the one-hot encoding in Section 3.2.

For a neural network with the softmax activation function on the final layer we typically use the negative
log-likelihood, which is also commonly referred to as the cross-entropy loss function, to train the model
(cf. (3.17))

θ̂ = argmin
θ

1

n

n∑
i=1

L(xi, yi, θ) where L(xi, yi, θ) = −
K∑
k=1

yik log qk(xi; θ). (4.20)

The cross-entropy is close to its minimum if the predicted probability qk(xi; θ) is close to 1 for the k for
which yik = 1. For example, if the ith data point belongs to class k = 2 out of in total K = 3 classes we have
yi =

[
0 1 0

]T. Assume that we have a sets of parameters of the network denoted θA, and with these parameters
we predict q1(xi; θA) = 0.1, q2(xi; θA) = 0.8 and q3(xi; θA) = 0.1 meaning that we are quite sure that data
point i actually belongs to class k = 2. This would generate a low cross-entropy L(xi, yi, θA) = −(0 · log 0.1 +
1 · log 0.8 + 0 · log 0.1) = 0.22. If we instead predict q1(xi; θB) = 0.8, q2(xi; θB) = 0.1 and q3(xi; θB) = 0.1,
the cross-entropy would be much higher L(xi, yi, θB) = −(0 · log 0.8 + 1 · log 0.1 + 0 · log 0.1) = 2.30. For
this case, we would indeed prefer the parameters θA over θB . This is summarized in Figure 4.6.

Computing the loss function explicitly via the logarithm could lead to numerical problems when qk(xi; θ) is
close to zero since log(x)→ −∞ as x→ 0. This can be avoided since the logarithm in the cross-entropy loss
function (4.20) can “undo” the exponential in the softmax function (4.18),

L(xi, yi, θ) = −
K∑
k=1

yik log qk(xi; θ) = −
K∑
k=1

yik log[softmax(zi)]k

= −
K∑
k=1

yik

(
zik − log

{∑K
j=1 e

zij
})

, (4.21)

= −
K∑
k=1

yik

(
zik −max

j
zij − log

{∑K
j=1 e

zij−maxj zij
})

, (4.22)

where zik are the logits.

4.3. Convolutional neural networks

Convolutional neural networks (CNN) are a special kind neural networks tailored for problems where the input
data has a grid-like topology. In this text we will focus on images, which have a 2D-topology of pixels. Images
as also the most common type of input data in applications where CNNs are applied. However, CNNs can be
used for any input data on a grid, also in 1D (e.g. audio waveform data) and 3D (volumetric data e.g. CT scans or
video data). We will focus on grayscale images, but the approach can easily be extended to color images as well.

4.3.1. Data representation of an image

Digital grayscale images consist of pixels ordered in a matrix. Each pixel can be represented as a range from 0
(total absence, black) to 1 (total presence, white) and values between 0 and 1 represent different shades of gray.
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Figure 4.7.: Data representation of a grayscale image with 6× 6 pixels. Each pixel is represented with a number describing
the grayscale color. We denote the whole image as X (a matrix), and each pixel value is an input variable Xj,k

(element in the matrix X).
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Figure 4.8.: An illustration of the interactions in a convolutional layer: Each hidden unit (circle) is only dependent on the
pixels in a small region of the image (red boxes), here of size 3 × 3 pixels. The location of the hidden unit
corresponds to the location of the region in the image: if we move to a hidden unit one step to the right, the
corresponding region also moves one step to the right, compare Figure 4.8a and Figure 4.8b. Furthermore, the
nine parameters β(1)

1,1 , β
(1)
1,2 , . . . , β

(1)
3,3 are the same for all hidden units in the layer.

In Figure 4.7 this is illustrated for an image with 6× 6 pixels. In an image classification problem, an image is
the input X and the pixels in the image are the input variables X1,1, X1,2, . . . , X6,6. The two indices j and k
determine the position of the pixel in the image, as illustrated in Figure 4.7.

If we put all input variables representing the images pixels in a long vector, we can use the network architecture
presented in Section 4.1 and 4.2 (and that is what we will do in the laboratory work to start with!). However, by
doing that, a lot of the structure present in the image data will be lost. For example, we know that two pixels
close to each other have more in common than two pixels further apart. This information would be destroyed by
such a vectorization. In contrast, CNNs perverse this information by representing the input variables as well as
the hidden layers as matrices. The core component in a CNN is the convolutional layer, which will be explained
next.

4.3.2. The convolutional layer

Following the input layer, we use a hidden layer with equally many hidden units as input variables. For the image
with 6× 6 pixels we consequently have 6× 6 = 36 hidden units. We choose to order the hidden units in a 6× 6
matrix, i.e. in the same manner as we did for the input variables, see Figure 4.8a.

The network layers presented in earlier sections (like the one in Figure 4.3) have been dense layer. This means
that each input variable is connected to each hidden unit in the following layer, and each such connection has a
unique parameter βjk associated with it. These layers have empirically been found to provide too much flexibility
for images and we might not be able to capture the patterns of real importance, and hence not generalize and
perform well on unseen data. Instead, a convolutional layer appears to exploit the structure present in images to

31



4. Deep learning and neural networks

X1,1X1,2X1,3X1,4X1,5X1,6

X2,1X2,2X2,3X2,4X2,5X2,6

X3,1X3,2X3,3X3,4X3,5X3,6

X4,1X4,2X4,3X4,4X4,5X4,6

X5,1X5,2X5,3X5,4X5,5X5,6

X6,1X6,2X6,3X6,4X6,5X6,6

0

0

0

0 0

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ

β
(1)
1,3

β
(1)
3,3

Input variables Hidden units

Figure 4.9.: An illustration of zero-padding. If the region is partly is outside the image. With zero-padding, the size of the
image can be preserved in the following layer.

find a more efficiently parameterized model. In contrast to a dense layer, a convolutional layer leverages two
important concepts – sparse interactions and parameter sharing – to achieve such a parametrization.

Sparse interactions

With sparse interactions we mean that most of the parameters in a dense layer are forced to be equal to zero.
More specifically, a hidden unit in a convolutional layer only depends on the pixels in a small region of the image
and not on all pixels. In Figure 4.8 this region is of size 3× 3. The position of the region is related to the position
of the hidden unit in its matrix topology. If we move to the hidden unit one step to the right, the corresponding
region in the image also moves one step to the right, as displayed by comparing Figure 4.8a and Figure 4.8b. For
the hidden units on the border, the corresponding region is partly located outside the image. For these border
cases, we typically use zero-padding where the missing pixels are replaced with zeros. Zero-padding is illustrated
in Figure 4.9.

Parameter sharing

In a dense layer each link between an input variable and a hidden unit has its unique parameter. With parameter
sharing we instead let the same parameter be present in multiple places in the network. In a convolutional layer
the set of parameters for the different hidden unit are all the same. For example, in Figure 4.8a we use the same
set of parameters to map the 3× 3 region of pixels to the hidden unit as we do in Figure 4.8b. Instead of learning
separate sets of parameters for every position we only learn one such set of a few parameters, and use it for all
links between the input layer and the hidden units. We call this set of parameters a kernel. The mapping between
the input variables and the hidden units can be interpreted as a convolution between the input variables and the
kernel, hence the name convolutional neural network.

The sparse interactions and parameter sharing in a convolutional layer makes the CNN fairly invariant to
translations of objects in the image. If the parameters in the kernel are sensitive to a certain detail (such as a
corner, an edge, etc.) a hidden unit will react to this detail (or not) regardless of where in the image that detail is
present! Furthermore, a convolutional layer uses a lot fewer parameters than the corresponding dense layer. In
Figure 4.8 only 3 · 3 + 1 = 10 parameters are required (including the offset parameter). If we had used a dense
layer (36 + 1) · 36 = 1332 parameters would have been needed! Another way of interpreting this is: with the
same amount of parameters, a convolutional layer can encode more properties of an image than a dense layer.

4.3.3. Condensing information with strides

In the convolutional layer presented above we have equally many hidden units as we have pixels in the image. As
we add more layers to the CNN we usually want to condense the information by reducing the number of hidden
units at each layer. One way of doing this is by not applying the kernel to every pixel but to say every two pixels.
If we apply the kernel to every two pixels both row-wise and column-wise, the hidden units will only have half
as many rows and half as many columns. For a 6× 6 image we get 3× 3 hidden units. This concept is illustrated
in Figure 4.10.
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Figure 4.10.: A convolutional layer with stride [2,2] and kernel of size 3× 3.

The stride controls how many pixels the kernel shifts over the image at each step. In Figure 4.8 the stride is
[1,1] since the kernel moves by one pixel both row- and column-wise. In Figure 4.10 the stride is [2,2] since it
moves by two pixels row- and column-wise. Note that the convolutional layer in Figure 4.10 still requires 10
parameters, as the convolutional layer in Figure 4.8 does. Another way of condensing the information after a
convolutional layer is by subsampling the data, so-called pooling. The interested can read further about pooling
in Goodfellow, Bengio, and Courville 2016.

4.3.4. Multiple channels

The networks presented in Figure 4.8 and 4.10 only have 10 parameters each. Even though this parameterization
comes with a lot of advantages, one kernel is probably not sufficient to encode all interesting properties of the
images in our data set. To extended the network, we add multiple kernels, each with their own set of kernel
parameters. Each kernel produces its own set of hidden units—a so-called channel—using the same convolution
operation as explained in Section 4.3.2. Hence, each layer of hidden units in a CNN are organized into a tensor
with the dimensions (rows × columns × channels). In Figure 4.11, the first layer of hidden units has four
channels and that hidden layer consequently has dimension 6× 6× 4.

When we continue to stack convolutional layers, each kernel depends not only on one channel, but on all
the channels in the previous layer. This is displayed in the second convolutional layer in Figure 4.11. As
a consequence, each kernel is a tensor of dimension (kernel rows × kernel columns × input channels). For
example, each kernel in the second convolutional layer in Figure 4.11 is of size 3 × 3 × 4. If we collect all
kernels parameters in one weight tensor W , that tensor will be of dimension (kernel rows × kernel columns ×
input channels × output channels). In the second convolutional layer in Figure 4.11, the corresponding weight
matrix W (2) is a tensor of dimension 3× 3× 4× 6. With multiple kernels in each convolutional layer, each of
them can be sensitive to different features in the image, such as certain edges, lines or circles enabling a rich
representation of the images in our training data.

4.3.5. Full CNN architecture

A full CNN architecture consists of multiple convolutional layers. Typically, we decrease the number of rows
and columns in the hidden layers as we proceed though the network, but instead increase the number of channels
to enable the network to encode more high level features. After a few convolutional layers we usually end a
CNN with one or more dense layers. If we consider an image classification task, we place a softmax layer at
the very end to get outputs in the range [0,1]. The loss function when training a CNN will be the same as in the
regression and classification networks explained earlier, depending on which type of problem we have at hand.
In Figure 4.11 a small example of a full CNN architecture is displayed.
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Figure 4.11.: A full CNN architecture for classification of grayscale 6 × 6 images. In the first convolutional layer four
kernels, each of size 3× 3, produce a hidden layer with four channels. The first channel (in the bottom) is
visualized in red and the forth (on the top in blue). We use the stride [1,1] which maintains the number of
rows and columns. In the second convolutional layer, six kernels of size 3× 3× 4 and the stride [2,2] are
used. They produce a hidden layer with 3 rows, 3 columns and 6 channels. After the two convolutional layers
follows a dense layer where all 3 · 3 · 6 = 54 hidden units in the second hidden layer are densely connected
to the third layer of hidden units where all links have their unique parameters. We add an additional dense
layer mapping down to the K logits. The network ends with a softmax function to provide predicted class
probabilities as output.

4.4. Training a neural network

To use a neural network for prediction we need to find an estimate for the parameters θ̂. To do that we solve an
optimization problem on the form

θ̂ = argmin
θ
J(θ) where J(θ) =

1

n

n∑
i=1

L(xi, yi, θ). (4.23)

We denote J(θ) as the cost function and L(xi, yi, θ) as the loss function. The functional form of the loss function
depends on if we have regression or a classification problem at hand, see e.g. (4.14) and (4.20).

These optimization problems can not be solved in closed form, so numerical optimization has to used. In
Appendix B, an introduction to numerical optimization is provided. In all numerical optimization algorithms the
parameters are updated in an iterative manner. In deep learning we typically use various versions of gradient
descent:

1. Pick an initialization θ0.

2. Update the parameters as θt+1 = θt − γ∇θJ(θt) for t = 1, 2, . . . . (4.24)

3. Terminate when some criterion is fulfilled, and take the last θt as θ̂.

In many applications of deep learning we cannot afford to compute the exact gradient∇θJ(θt) at each iteration.
Instead we use approximations, which are explained in Section 4.4.2. In Section 4.4.3 strategies how to tune the
learning rate γ are presented and in Section 4.4.4 a popular regularization method called dropout is described.
First, however, a few words on how to initialize the training.

4.4.1. Initialization

The previous optimization problems (LASSO (2.29), logistic regression (3.8)) that we have encountered have all
been convex. This means that we can guarantee global convergence regardless of what initialization θ0 we use.
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In contrast, the cost functions for training neural networks is usually non-convex. This means that the training
is sensitive to the value of the initial parameters. Typically, we initialize all the parameters to small random
numbers such that we ensure that the different hidden units encode different aspects of the data. If the ReLU
activation functions are used, offset elements b0 are typically initialized to a small positive value such that it
operates in the non-negative range of the ReLU.

4.4.2. Stochastic gradient descent

Many problems that are addressed with deep learning contain more than a million training data points n, and the
design of the neural network is typically made such that θ has more than a million elements. This provides a
computational challenge.

A crucial component is the computation of the gradient required in the optimization routine (4.24)

∇θJ(θ) =
1

n

n∑
i=1

∇θL(xi, yi, θ). (4.25)

If the number of data points n is big, this operation is costly. However, we can often assume that the data
set is redundant meaning that many of the data points are similar. Then the gradient based on the first half of
the dataset ∇θJ(θ) ≈

∑n
2
i=1∇θL(xi, yi, θ) is almost identical to the gradient based on the second half of the

dataset ∇θJ(θ) ≈
∑n

i=n
2
+1∇θL(xi, yi, θ). Consequently, it is a waste of time of compute the gradient based

on the whole data set. Instead, we could compute the gradient based on the first half of the data set, update the
parameters, and then get the gradient for the new parameters based on the second half of the data,

θt+1 = θt − γ
1

n/2

n
2∑
i=1

∇θL(xi, yi, θt), (4.26a)

θt+2 = θt+1 − γ
1

n/2

n∑
i=n

2
+1

∇θL(xi, yi, θt+1). (4.26b)

These two steps would only require roughly half the computational time in comparison to if we had used the
whole data set for each gradient computation.

The extreme version of this strategy would be to use only a single data point each time when computing the
gradient. However, most commonly when training a deep neural network we do something in between, using
more than one data point but not all data points when computing the gradient We use a smaller set of training
data called a mini-batch. Typically, a mini-batch contains nb = 10, nb = 100 or nb = 1000 data points.

One important aspect when using mini-batches is that the different mini-batches are balanced and representative
for the whole data set. For example, if we have a big training data set with a few different classes and the data set
is sorted after the classes (i.e. samples belonging to class k = 1 are first, and so on), a mini-batch with first nb
samples would only include one class and hence not give a good approximation of the gradient for the full data
set.

For this reason, we prefer to draw nb training data points at random from the training data to form a mini-batch.
One implementation of this is to first randomly shuffle the training data, before dividing it into mini-batches in
an order manner. One complete pass through the training data is called an epoch. When we have completed one
epoch, we do another random reshuffling of the training data and do another pass though the data set. We call
this procedure stochastic gradient descent or mini-batch gradient descent. A pseudo algorithm is presented in
Algorithm 1.

Since the neural network model is a composition of multiple layers, the gradient of the loss function with
respect to all the parameters ∇θL(xi, yi, θ)

∣∣∣
θ=θt

can be analytically and efficiently computed by applying the

chain rule of differentiation. This is called back-propagation and is not described further here. The interested
reader can find more in, for example, Goodfellow, Bengio, and Courville 2016, Section 6.5.
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Algorithm 1 Mini-batch gradient descent

1. Initialize all the parameters θ0 in the network and set t← 1.

2. For i = 1 to E

a) Randomly shuffle the training data {(xi, yi)}ni=1.

b) For j = 1 to n
nb

i. Approximate the gradient of the loss function using the mini-batch {(xi, yi)}jnbi=(j−1)nb+1,

ĝt =
1
nb

∑jnb
i=(j−1)nb+1∇θL(xi, yi, θ)

∣∣∣
θ=θt

.

ii. Do a gradient step θt+1 = θt − γĝt.
iii. Update the iteration index t← t+ 1 .

4.4.3. Learning rate

An important tuning parameter for (stochastic) gradient descent is the learning rate γ. The learning rate γ decides
the length of the gradient step that we take at each iteration. If we use a too low learning rate, the estimate θt
from one iteration to the next will not change much and the learning will progress slower than necessarily. This
is illustrated in Figure 4.12a for a small optimization problem with only one parameter θ.

In contrast, with a too big learning rate, the estimate will pass the optimum and never converge since the step
is too long, see Figure 4.12b. For a learning rate which neither is too slow nor too fast, convergence is achieved
in a reasonable amount of iterations. A good strategy to find a good learning rate is:

• if the error keeps getting worse or oscillates widely, reduce the learning rate

• if the error is fairly consistently but slowly increasing, increase the learning rate.

Convergence with gradient descent can be achieved with a constant learning rate since the gradient itself
approaches zero when we reach the optimum, hence also the gradient step γ∇θJ(θ)|θ=θt . However, this is
not true for stochastic gradient descent since the gradient ĝt is only an approximation of the true gradient
∇θJ(θ)|θ=θt , and ĝt will not necessarily approach 0 as J(θ) approaches its minimum. As a consequence, we
will make a too big updates as we start approaching the optimum and the stochastic gradient algorithm will not
converge. In practice, we instead adjust the learning rate. We start with a fairly high learning rate and then decay
the learning rate to a certain level. This can, for example, be achieved by the rule

γt = γmin + (γmax − γmin)e
− t
τ . (4.27)

Here the learning rate starts at γmax and goes to γmin as t → ∞. How to pick the parameters γmin, γmax and
τ is a more of an art than science. As a rule of thumb γmin can be chosen approximately as 1% of γmax. The
parameter τ depends on the size of the data set and the complexity of the problem, but should be chosen such
that multiple epochs have passed before we reach γmin. The strategy to pick γmax can be the same as for normal
gradient descent explained above.

Under certain regularity conditions and if the so called Robbins-Monro condition holds:
∑∞

t=1 γt =∞ and∑∞
t=1 γ

2
t <∞, then stochastic gradient descent converges almost surely to a local minimum. However, to be

able to satisfy the Robbins-Monro condition we need γt → 0 as t→∞. In practice this it typically not the case
and we instead let the learning rate approach a non-zero level γmin > 0 by using a scheme like the one in (4.27).
This has been found to work better in practice in many situations, despite sacrificing the theoretical convergence
of the algorithm.
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Figure 4.12.: Optimization using gradient descent of a cost function J(θ) where θ is a scalar parameter. In the different
subfigures we use a too low learning rate (a), a too high learning rate (b), and a good learning rate (c).

4.4.4. Dropout

Like all models presented in this course, neural network models can suffer from overfitting if we have a too
flexible model in relation to the complexity of the data. Bagging (James et al. 2013, Chapter 8.2) is one way
to reduce the variance and by that also the overfitting of the model. In bagging we train an entire ensemble of
models. We train all models (ensemble members) on a different data set each, which has been bootstrapped
(sampled with replacement) from the original training data set. To make a prediction, we first make one prediction
with each model (ensemble member), and then average over all models to obtain the final prediction.

Bagging is also applicable to neural networks. However, it comes with some practical problems; a large neural
network model usually takes quite some time to train and it also has quite some parameters to store. To train
not just one but an entire ensemble of many large neural networks would thus be very costly, both in terms of
runtime and memory. Dropout (Srivastava et al. 2014) is a bagging-like technique that allows us to combine
many neural networks without the need to train them separately. The trick is to let the different models share
parameters with each other, which reduces the computational cost and memory requirement.
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(b) Two sub-networks

Figure 4.13.: A neural network with two hidden layers (a), and two sub-networks with dropped units (b). The collection of
units that have been dropped are independent between the two sub-networks.

Ensemble of sub-networks

Consider a neural network like the one in Figure 4.13a. In dropout we construct the equivalent to an ensemble
member by randomly removing some of the hidden units. We say that we drop the units, hence the name dropout.
By this we achieve a sub-network of our original network. Two such sub-networks are displayed in Figure 4.13b.
We randomly sample with a pre-defined probability which units to drop, and the collection of dropped units in
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one sub-network is independent from the collection of dropped units in another sub-network. When a unit is
removed, also all its incoming and outgoing connections are removed. Not only hidden units can be dropped, but
also input variables.

Since all sub-networks are of the very same original network, the different sub-networks share some parameters
with each other. For example, in Figure 4.13b the parameter β(1)55 is present in both sub-networks. The fact that
they share parameters with each other allow us to train the ensemble of sub-networks in an efficient manner.

Training with dropout

To train with dropout we use the mini-batch gradient descent algorithm described in Algorithm 1. In each
gradient step a mini-batch of data is used to compute an approximation of the gradient, as before. However,
instead of computing the gradient for the full network, we generate a random sub-network by randomly dropping
units as described above. We compute the gradient for that sub-network as if the dropped units were not present
and then do a gradient step. This gradient step only updates the parameters present in the sub-network. The
parameters that are not present are left untouched. In the next gradient step we grab another mini-batch of data,
remove another randomly selected collection of units and update the parameters present in that sub-network. We
proceed in this manner until some terminal condition is fulfilled.

Dropout vs bagging

This procedure to generate an ensemble of models differs from bagging in a few ways:

• In bagging all models are independent in the sense that they have their own parameters. In dropout the
different models (the sub-networks) share parameters.

• In bagging each model is trained until convergence. In dropout each sub-network is only trained for a
singe gradient step. However, since they share parameters all models will be updated also when the other
networks are trained.

• Similar to bagging, in dropout we train each model on a data set that has been randomly selected from
our training data. However, in bagging we usually do it on a bootstrapped version of the whole data set
whereas in dropout each model is trained on a randomly selected mini-batch of data.

Even though dropout differs from bagging in some aspects it has empirically been shown to enjoy similar
properties as bagging in terms of avoiding overfittning and reducing the variance of the model.

Prediction at test time

After we have trained the sub-networks, we want to make a prediction based on an unseen input data point
X = x∗. In bagging we evaluate all the different models in the ensemble and combine their results. This would
be infeasible in dropout due to the very large (combinatorial) number of possible sub-networks. However, there
is a simple trick to approximately achieve the same result. Instead of evaluating all possible sub-networks we
simply evaluate the full network containing all the parameters. To compensate for the fact that the model was
trained with dropout, we multiply each estimated parameter going out from a unit with the probability of that
unit being included during training. This ensures that the expected value of the input to a unit is the same during
training and testing, as during training only a fraction of the incoming links were active. For instance, assume
that we during training kept a unit with probability p in all layers, then during testing we multiply all estimated
parameters with p before we do a prediction based on network. This is illustrated in Figure 4.14. This procedure
of approximating the average over all ensemble members has been shown to work surprisingly well in practice
even though there is not yet any solid theoretical argument for the accuracy of this approximation.
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Figure 4.14.: The network used for prediction after being trained with dropout. All units and links are present (no dropout)
but the weights going out from a certain unit is multiplied with the probability of that unit being included
during training. This is to compensate for the fact that some of them where dropped during training. Here all
units have been kept with the probability p during training (and dropped with the probability 1− p).

Dropout as a regularization method

As a way to reduce the variance and avoid overfitting, dropout can be seen as a regularization method. There are
plenty of other regularization methods for neural networks including parameter penalties (like we did in ridge
regression and LASSO in Section 2.5.1 and 2.5.2), early stopping (you stop the training before the parameters
have converged, and thereby avoid overfitting) and various sparse representations (for example CNNs can be seen
as a regularization method where most parameters are forced to be zero) to mention a few. Since its invention,
dropout has become one of the most popular regularization techniques due to its simplicity, computationally
cheap training and testing procedure and its good performance. In fact, a good practice of designing a neural
network is often to extended the network until you see that it starts overfitting, extended it a bit more and add a
regularization like dropout to avoid that overfitting.

4.5. Perspective and further reading

Although the first conceptual ideas of neural networks date back to the 1940s (McCulloch and Pitts 1943),
they had their first main success stories in the late 1980s and early 1990s with the use of the so-called back-
propagation algorithm. At that stage, neural networks could, for example, be used to classify handwritten digits
from low-resolution images (LeCun, Boser, et al. 1990). However, in the late 1990s neural networks were
largely forsaken because it was widely thought that they could not be used to solve any challenging problems in
computer vision and speech recognition. In these areas, neural networks could not compete with hand-crafted
solutions based on domain specific prior knowledge.

This picture has changed dramatically since the late 2000s, with multiple layers under the name deep learning.
Progress in software, hardware and algorithm parallelization made it possible to address more complicated
problems, which were unthinkable only a couple of decades ago. For example, in image recognition, these deep
models are now the dominant methods of use and they reach almost human performance on some specific tasks
(LeCun, Bengio, and Hinton 2015). Recent advances based on deep neural networks have generated algorithms
that can learn how to play computer games based on pixel information only (Mnih et al. 2015), and automatically
understand the situation in images for automatic caption generation (Xu et al. 2015).

A fairly recent and accessible introduction and overview of deep learning is provided by LeCun, Bengio, and
Hinton (2015), and a recent textbook by Goodfellow, Bengio, and Courville (2016).
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In the previous chapters we have introduced some fundamental methods for machine learning. We now turn
our attention to a technique referred to as boosting, which is of a slightly different flavor. Boosting is a meta-
algorithm, in the sense that it is a method composed of other methods. We start by explaining the high-level idea
in Section 5.1, followed by a detailed derivation of an early boosting method called AdaBoost in Sections 5.2
and 5.3. Finally, in Section 5.5 we discuss some improvements and extensions.

5.1. The conceptual idea

Boosting is built on the idea that even a simple (or weak) regression or classification model often can capture
some of the relationship between the inputs and the output. Thus, by training multiple weak models, each
describing part of the input-output relationship, it might be possible to combine the predictions of these models
into an overall better prediction. Hence, the intention is to turn an ensemble of weak models into one strong
model.

Boosting shares some similarities with bagging, see James et al. 2013, Section 8.2. Both are ensemble methods,
i.e. they are based on combining the predictions from multiple models (an “ensemble”). Both bagging and
boosting can also be viewed as meta-algorithms, in the sense that they can be used to combine essentially any
regression or classification algorithm—they are algorithms built on top of other algorithms. However, there are
also important differences between boosting and bagging which we will discuss throughout this chapter.

The first key difference is in the construction of the ensemble. In bagging we construct B models in
parallel. These models are random (based on randomly bootstrapped datasets) but they are identically distributed.
Consequently, there is no reason to trust one model more than another, and the final prediction of the bagged
model is based on a plain average or majority vote of the individual predictions of the ensemble members.

Boosting, on the other hand, uses a sequential construction of the ensemble members. Informally, this is done
in such a way that each model tries to correct the mistakes made by the previous one. This is accomplished
by modifying the training data set at each iteration in order to put more emphasis on the data points for which
the model (so far) has performed poorly. In the subsequent sections we will see exactly how this is done for
a specific boosting algorithm known as AdaBoost (Freund and Schapire 1996). First, however, we consider a
simple example of to illustrate the idea.
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Example 5.1: Boosting illustration

We consider a toy binary classification problem with two input variables, X1 and X2. The training data
consists of n = 10 data points, 5 from each of the two classes. We use a decision stump, a classification
tree of depth one, as a simple (weak). A decision stump means that we select one of the input variables,
X1 or X2, and split the input space into two half spaces, in order to minimize the training error. This
results in a decision boundary that is perpendicular to one of the axes. The left panel of Figure 5.1 shows
the training data, illustrated by red crosses and blue dots for the two classes, respectively. The colored
regions shows the decision boundary for a decision stump Ĝ1(X) trained on this data.
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Ĝ1(X)

X1

X
2

Iteration b = 2
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Ĝboost(X)

Figure 5.1.: Three iterations of AdaBoost for toy problem. See text for details.

The model Ĝ1(X) misclassifies three data points (red crosses falling in the blue region), which are
encircled in the figure. To improve the performance of the classifier we want to find a model that can
distinguish these three points from the blue class. To this end, we train another decision stump, Ĝ2(X), on
the same data. To put emphasis on the three misclassified points, however, we assign weights {w2

i }ni=1 to
the data. Points correctly classified by Ĝ1(X) are down-weighted, whereas the three points misclassified
by Ĝ1(X) are up-weighted. This is illustrated in the second panel of Figure 5.1, where the marker
sizes have been scaled according to the weights. The classifier Ĝ2(X) is then found by minimizing the
weighted misclassification error, 1

n

∑n
i=1w

2
i I(yi 6= Ĝ2(xi)), resulting in the decision boundary shown in

the second panel. This procedure is repeated for a third and final iteration: we update the weights based
on the hits and misses of Ĝ2(X) and train a third decision stump Ĝ3(X) shown in the third panel. The
final classifier, Ĝboost(X) is then taken as a combination of the three decision stumps. Its (nonlinear)
decision boundaries are shown in the right panel.

5.2. Binary classification, margins, and exponential loss

Before diving into the details of the AdaBoost algorithm we will lay the groundwork by introducing some nota-
tions and concepts that will be used in its derivation. AdaBoost was originally proposed for binary classification
(K = 2) and we will restrict our attention to this setting. That is, the output Y can take two different values
which, in this chapter, we encode as −1 and +1. This encoding turns out to be mathematically convenient in the
derivation of AdaBoost. However, it is important to realize that the encoding that we choose for the two classes
is arbitrary and all the concepts defined below can be generalized to any binary encoding (e.g. {0, 1} which we
have used before).

Let G(X) = sign{C(X)}, which can be seen as a classifier constructed by thresholding some real-valued
function C(X) at 0. This is a common situation and, in particular, it is the case for the AdaBoost algorithm
presented below. Note that the decision boundary is given by values of X for which C(X) = 0. For simplicity
of presentation we will assume that no data points fall exactly on the decision boundary (which always gives rise
to an ambiguity), so that we can assume that G(X) as defined above is always either −1 or +1.

Based on the function C(X) we define the margin of the classifier as

Y · C(X). (5.1)
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Figure 5.2.: Exponential loss.

It follows that if Y and C(X) have the same sign, i.e. if the classification is correct, then the margin is positive.
Analogously, for an incorrect classification Y and C(X) will have different signs and the margin is negative.
More specifically, since Y is either −1 or +1, the margin is simply |C(X)| for correct classifications and
−|C(X)| for incorrect classifications. The margin can thus be viewed as a measure of certainty in a prediction,
where values with small margin in some sense (not necessarily Euclidian!) are close to the decision boundary.
The margin plays a similar role for binary classification as the residual Y − f(X) does for regression.

Loss functions for classification can be defined in terms of the margin, by assigning small loss to positive
margins and large loss to negative margins. One such loss function is the exponential loss defined as

L(Y,C(X)) = exp(−Y C(X)). (5.2)

Figure 5.2 illustrates the exponential loss and compares it against the misclassification loss, which is simply
I(Y C(X) < 0).

Remark 5.1. The misclassification loss is often used to evaluate the performance of a classifier (in particular if
interest only lies in the number of correct and incorrect classification). However, it is typically not suitable to use
directly during training of the model. The reason is that it is discontinuous which is problematic in a numerical
minimization of the training loss. The exponential loss function, on the other hand, is both convex and (infinitely
many times) differentiable. These are nice properties to have when optimizing the training loss. In fact, the
exponential loss can in this way be seen as a more convenient proxy for misclassification loss during training.
Other loss functions of interest are discussed in Section 5.5.

5.3. AdaBoost

We are now ready to derive a practical boosting method, the AdaBoost (Adaptive Boosting) algorithm proposed
by Freund and Schapire (1996). AdaBoost was the first successful practical implementation of the boosting idea
and lead the way for its popularity. Freund and Schapire were awarded the prestigious Gödel Prize in 2003 for
their algorithm.

Recall from the discussion above that boosting attempts to construct a sequence of B (weak) classifiers
Ĝ1(X), Ĝ2(X), . . . , ĜB(X). Any classification model can in principle be used to construct these so called
base classifiers—shallow classification trees are common in practice (see Section 5.4 for further discussion).
The individual predictions of the B ensemble members are then combined into a final prediction. However, all
ensemble members are not treated equally. Instead, we assign some positive coefficients {αb}Bb=1 and construct
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the boosted classifier using a weighted majority vote according to

ĜBboost(X) = sign

{
B∑
b=1

αbĜb(X)

}
. (5.3)

Note that each ensemble member votes either −1 or +1. The output from the boosted classifier is +1 if the
weighted sum of the individual votes is positive and −1 if it is negative.

How, then, do we compute the individual ensemble members and their coefficients? The answer to this
question depends on the specific boosting method that is used. For AdaBoost this is done by greedily minimizing
the exponential loss of the boosted classifier at each iteration. Note that we can write the boosted classifier
after b iterations as Ĝbboost = sign{Cb(X)} where Cb(X) =

∑b
j=1 α

jĜj(X). Furthermore, we can express the
function Cb(X) sequentially as

Cb(X) = Cb−1(X) + αbĜb(X), (5.4)

initialized with C0(X) ≡ 0. Since we assume that the ensemble members are constructed sequentially, when at
iteration b of the procedure the function Cb−1(X) is known and fixed. Thus, what remains to be computed at
iteration b is the coefficient αb and the ensemble member Ĝb(X). This is done by minimizing the exponential
loss of the training data,

(αb, Ĝb) = argmin
(α,G)

n∑
i=1

L(yi, C
b(xi)) (5.5a)

= argmin
(α,G)

n∑
i=1

exp
(
−yi

{
Cb−1(xi) + αG(xi)

})
(5.5b)

= argmin
(α,G)

n∑
i=1

wbi (−yiαG(xi)) (5.5c)

where for the first equality we have used the definition of the exponential loss function (5.2) and the sequential
structure of the boosted classifier (5.4). For the second equality we have defined the quantities

wbi
def
= exp

(
−yiCb−1(xi)

)
, i = 1, . . . , n, (5.6)

which can be interpreted as weights for the individual data points in the training data set. Note that these weights
are independent of α and G and can thus be viewed as constants when solving the optimization problem (5.5c) at
iteration b of the boosting procedure (the fact that we keep previous coefficients and ensemble members fixed is
what makes the optimization “greedy”).

To solve (5.5) we start by writing the objective function as

n∑
i=1

wbi exp (−yiαG(xi)) = e−α
n∑
i=1

wbi I(yi = G(xi))︸ ︷︷ ︸
=Wc

+ eα
n∑
i=1

wbi I(yi 6= G(xi))︸ ︷︷ ︸
=We

, (5.7)

where we have used the indicator function to split the sum into two sums: the first ranging over all training data
points correctly classified by G and the second ranging over all point erroneously classified by G. Furthermore,
for notational simplicity we define Wc and We for the sum of weights of correctly classified and erroneously
classified data points, respectively. Furthermore, let W =Wc +We be the total weight sum, W =

∑n
i=1w

b
i .

Minimizing (5.7) is done in two stages, first w.r.t. G and then w.r.t. α. This is possible since the minimizing
argument in G turns out to be independent of the actual value of α > 0. To see this, note that we can write the
objective function (5.7) as

e−αW + (eα − e−α)We. (5.8)
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Since the total weight sum W is independent of G and since eα − e−α > 0 for any α > 0, minimizing this
expression w.r.t. G is equivalent to minimizing We w.r.t. G. That is,

Ĝb = argmin
G

n∑
i=1

wbi I(yi 6= G(xi)). (5.9)

In words, the bth ensemble member should be selected by minimizing the weighted misclassification loss, where
each data point (xi, yi) is assigned a weight wbi . The intuition for these weights is that, at iteration b, we should
focus our attention on the data points previously misclassified in order to “correct the mistakes” made by the
ensemble of the first b− 1 classifiers.

How the problem (5.9) is solved in practice depends on the choice of base classifier that we use, i.e. on the
specific restrictions that we put on the function G (for example a shallow classification tree). However, since
(5.9) is essentially a standard classification objective it can be solved, at least approximately, by standard learning
algorithms. Incorporating the weights in the objective function is straightforward for most base classifiers, since
it simply boils down to weighting the individual terms of the loss function used when training the base classifier.

When the bth ensemble member, Ĝb(X), has been found by solving (5.9) it remains to compute its coefficient
αb. Recall that this is done by minimizing the objective function (5.8). Differentiating this expression w.r.t. α
and setting the derivative to zero we get the equation

−αe−αW + α
(
eα + e−α

)
We = 0

⇐⇒W =
(
e2α + 1

)
We

⇐⇒ α =
1

2
log

(
W

We
− 1

)
.
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Thus, by defining

errb def
=
We

W
=

n∑
i=1

wbi∑n
j=1w

b
j

I(yi 6= Ĝb(xi)) (5.11)

to be the weighted misclassification error for the bth classifier, we can express the optimal value for its coefficient
as

αb =
1

2
log

(
1− errb

errb

)
. (5.12)

This completes the derivation of the AdaBoost algorithm, which is summarized in Algorithm 2. In the algorithm
we exploit the fact that the weights (5.6) can be computed recursively by using the expression (5.4); see line 2.
Furthermore, we have added an explicit weight normalization (line 2) which is convenient in practice and which
does not affect the derivation of the method above.

Remark 5.2. One detail worth commenting is that the derivation of the AdaBoost procedure assumes that all
coefficients {αb}Bb=1 are positive. To see that this is indeed the case when the coefficients are computed according
to (5.12), note that the function log((1 − x)/x) is positive for any 0 < x < 0.5. Thus, αb will be positive as
long as the weighted training error for the bth classifier, errb, is less than 0.5. That is, the classifier just has to be
slightly better than a coin flip, which is always the case in practice (note that errb is the training error). Indeed, if
errb > 0.5, then we could simply flip the sign of all predictions made by Ĝb(X) to reduce the error!

In the method discussed above we have assumed that each base classifier outputs a discrete class prediction,
Ĝb(X) ∈ {−1, 1}. However, many classification models used in practice are in fact based on estimating the
conditional class probabilities. Hence, it is possible to instead let each base model output a real number and use
these numbers as the basis for the “vote”. This extension of Algorithm 2 is discussed by Friedman, Hastie, and
Tibshirani 2000 and is referred to as Real AdaBoost.

44



5. Boosting

Algorithm 2 AdaBoost

1. Assign weights w1
i = 1/n to all data points.

2. For b = 1 to B

(a) Train a weak classifier Ĝb(X) on the weighted training data {(xi, yi, wbi )}ni=1.

(b) Update the weights {wb+1
i }ni=1 from {wbi}ni=1:

i. Compute errb =
∑n

i=1w
b
i I(yi 6= Ĝb(xi))

ii. Compute αb = 0.5 log((1− errb)/errb).

iii. Compute wb+1
i = wbi exp(−αbyiĜb(xi)), i = 1, . . . , n

iv. Normalize. Set wb+1
i ← wb+1

i /
∑n

j=1w
b+1
j , for i = 1, . . . , n.

3. Output ĜBboost(X) = sign
{∑B

b=1 α
bĜb(X)

}
.

5.4. Boosting vs. bagging: base models and ensemble size

AdaBoost, an in fact any boosting algorithm, has two important design choices, (i) which base classifier to use,
an (ii) how many iterations B to run the boosting algorithm for. As previously pointed out, we can use essentially
any classification method as base classifier. However, the most common choice in practice is to use a shallow
classification tree, or even a decision stump (i.e., a tree of depth one; see example 5.1). This choice is guided by
the fact that the boosting algorithm can learn a good model despite using very weak base classifiers, and shallow
trees can be trained quickly. In fact, using deep (high-variance) classification trees as base classifiers typically
deteriorates performance compared to using shallow trees. More specifically, the depth of the tree should be
chosen to obtain a desired degree of interactions between input variables. A tree with M terminal nodes is able
to model functions depending on maximally M − 1 of the input variables; see Hastie, Tibshirani, and Friedman
2009, Chapter 10.11 for a more in-depth discussion on this matter.

The fact that boosting algorithms often use shallow trees as base classifiers is a clear distinction from the
(somewhat similar) bagging method (see James et al. 2013, Chapter 8.2). Bagging is a pure variance reduction
technique based on averaging and it can not reduce the bias of the individual base models. Hence, for bagging
to be successful we need to use base models with low bias (but possibly high variance)—typically very deep
decision trees. Boosting on the other hand can reduce both the variance and the bias of the base models, making
it possible to use very simple base models as described above.

Another important difference between boosting and bagging is that the former is sequential whereas the latter
is parallel. Each iteration of a boosting algorithm introduces a new base model aiming at reducing the errors
made by the current model. In bagging, on the other hand, all base models are identically distributed and they all
try to solve the same problem, with the final model being a simple average over the ensemble. An effect of this is
that bagging does not overfit as the number of ensemble members B tend to infinity. Unfortunately, this is not
the case for boosting. Indeed, a boosting model becomes more and more flexible as the number of iterations B
increase and using too many base models can result in overfitting. It has been observed in practice, however,
that this overfitting often occurs slowly and the performance tends to be rather insensitive to the choice of B.
Nevertheless, it is a good practice to select B in some systematic way, for instance using so called early stopping
(this is also common in the context of training neural networks; see Section 4.4.4).
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Figure 5.3.: Comparison of common loss functions for classification.

5.5. Robust loss functions and gradient boosting

As pointed out above, the margin Y ·C(X) can be used as a measure of the error made by the classifier G(X) =
sign{C(X)}, where negative margins correspond to incorrect classifications and positive margins correspond to
correct classifications. It is therefore natural to use a loss function which is a decreasing function of the margin:
negative margins should be penalized more than positive margins. The exponential loss function (5.2)—which
was used in the derivation of the AdaBoost algorithm—satisfies this requirement, as can be seen in Figure 5.2.
However, it is also evident that this loss function penalizes negative margins very heavily. This can be an issue in
practical applications, making the classifier sensitive to noisy data and “outliers”, such as mislabeled or atypical
data points.

To address these limitations we can consider using some other, more robust, loss function in place of the
exponential loss. A few examples of commonly used loss functions for classification are shown in Figure 5.3 (see
appendix C for the mathematical definitions of these functions). An in-depth discussion of the rationale and pros
and cons of these different loss functions is beyond the scope of these lecture notes and we refer the interested
reader to Hastie, Tibshirani, and Friedman 2009, Chapter 10.6. However, we note that all the alternative loss
functions illustrated in the figure have less “aggressive” penalties for large negative margins compared to the
exponential loss, i.e., their slopes are not as sharp,1 making them more robust to noisy data.

Why then have we not used a more robust loss function in the derivation of the AdaBoost algorithm? The
reason for this is mainly computational. Using exponential loss is convenient since it leads to a closed form
solution to the optimization problem in (5.5). If we instead use another loss function this analytical tractability is
unfortunately lost.

However, this difficulty can be dealt with by using techniques from numerical optimization. This approach is
complicated to some extent by the fact that the optimization “variable” in (5.5a) is the base classifier G(X) itself.
Hence, it is not possible to simply use an off-the-shelf numerical optimization algorithm to solve this problem.
That being said, however, it has been realized that it is possible to approximately solve (5.5a) for rather general
loss function using a method reminiscent of gradient descent (appendix B). The resulting method is referred to as
gradient boosting Friedman 2001; Mason et al. 1999. We provide pseudo-code for one instance of a gradient
boosting method in Algorithm 3. As can be seen from the algorithm, the key step involves fitting a base model to
the negative gradient of the loss function. This can be understood via the intuitive interpretation of boosting, that
each base model should try to correct the mistakes made by the ensemble thus far. The negative gradient of the
loss function gives an indication of in which “direction” the model should be updated in order to reduce the loss.

1Hinge loss, binomial deviance, and the Huber-like loss all increase linearly for large negative margins. Exponential loss, of course,
increases exponentially.
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5. Boosting

Algorithm 3 A gradient boosting algorithm

1. Initialize (as a constant), C0(X) ≡ argminc
∑n

i=1 L(yi, c).

2. For b = 1 to B

(a) Compute the negative gradient of the loss function,

gbi = −
[
∂L(yi, c)

∂c

]
c=Cb−1(xi)

, i = 1, . . . , n.

(b) Train a base regression model f̂ b(X) to fit the gradient values,

f̂ b = argmin
f

n∑
i=1

(
f(xi)− gbi

)2
.

(c) Update the boosted model,
Cb(X) = Cb−1 + γf̂ b(X)

3. Output ĜBboost(X) = sign{CB(X)}.

While presented for classification in Algorithm 3, gradient boosting can also be used for regression with minor
modifications. In fact, an interesting aspect of the algorithm presented here is that the base models f̂ b(X) are
found by solving a regression problem despite the fact that the algorithm produces a classifier. The reason for this
is that the negative gradient values {gbi}ni=1 are quantitative variables, even if the data {yi}ni=1 is qualitative. Here
we have considered fitting a base model to these negative gradient values by minimizing a square loss criterion.

The value γ used in the algorithm (line 2(c)) is a tuning parameter which plays a similar role to the step size in
ordinary gradient descent. In practice this is usually found by line search (see appendix B), often combined with
a type of regularization via shrinkage (Friedman 2001). When using trees as base models—as is common in
practice—optimizing the steps size can be done jointly with finding the terminal node values, resulting in a more
efficient implementation (Friedman 2001).

As mentioned above, gradient boosting requires a certain amount of smoothness in the loss function. A
minimal requirement is that it is almost everywhere differentiable, so that it is possible to compute the gradient
of the loss function. However, some implementations of gradient boosting require stronger conditions, such as
second order differentiability. The binomial deviance (see Figure 5.3) is in this respect a “safe choice” which is
infinitely differentiable and strongly convex, while still enjoying good statistical properties. As a consequence,
binomial deviance is one of the most commonly used loss functions in practice.

5.6. Implementations of boosting

There are several R packages implementing boosting algorithms. AdaBoost is available in for instance adabag
and gbm. The latter package also provides some gradient boosting models. The most popular implementation of
gradient boosting is perhaps XGBoost (Chen and Guestrin 2016), which has won several Kaggle competitions
over the past few years. XGBoost uses various tricks for improving the speed and performance (for instance,
regularization and second order optimization). It is available in R via the package xgboost. A recent competitor
to XGBoost, developed as part of the Microsoft Distributed Machine Learning Toolkit, is LightGBM (Ke et al.
2017). This library is currently not available on CRAN, but an R implementation is available on GitHub, see
https://github.com/Microsoft/lightGBM.
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A. Derivation of the normal equations

The normal equations (2.17)

β̂ = (XTX)−1XTy. (A.1)

can be derived from (2.16)

β̂ = argmin
β

‖Xβ − y‖22, (A.2)

in different ways. We will present one based on (matrix) calculus and one based on geometry and linear algebra.

A.1. A calculus approach

Let

S(β) = ‖Xβ − y‖22 = (Xβ − y)T(Xβ − y) = yTy − 2yTXβ + βTXTXβ, (A.3)

and differentiate S(β) with respect to the vector β,

∂

∂β
S(β) = −2XTy + 2XTXβ. (A.4)

Since S(β) is a positive quadrartic form, its minimum must be attained at ∂
∂βS(β) = 0, which characterizes the

solution β̂ as

∂

∂β
S(β̂) = 0⇔ −2XTy + 2XTXβ = 0⇔ XTXβ̂ = XTy. (A.5)

If XTX is invertible, this (uniquely) gives

β̂ = (XTX)−1XTy, (A.6)

i.e., the normal equations. If XTX is not invertible, the equation (A.5) has infinite many solutions β̂, which are
all equally good solutions to the problem (A.2).
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A. Derivation of the normal equations

A.2. A linear algebra approach

Denote the p + 1 columns of X as cj , j = 1, . . . , p + 1. We first show that ‖Xβ − y‖22 is minimzed if β is
chosen such that Xβ is the orthogonal projection of y onto the (sub)space spanned by the columns cj of X, and
then show that the orthogonal projection is found by the normal equations.

Let us decompose y as y⊥ + y‖, where y⊥ is orthogonal to the (sub)space spanned by all columns ci, and y‖
is in the subscpace spanned by all columns ci. Since y⊥ is orthogonal to both y‖ and Xβ, it follows that

‖Xβ − y‖22 = ‖Xβ − (y⊥ + y‖)‖22 = ‖(Xβ − y‖)− y⊥‖22 ≥ ‖y⊥‖22, (A.7)

and the triangle inequality also gives us

‖Xβ − y‖22 = ‖Xβ − y⊥ − y‖‖22 ≤ ‖y⊥‖22 + ‖Xβ − y‖‖22. (A.8)

This implies that if we choose β such that Xβ = y‖, the criterion ‖Xβ − y‖22 must have reached its minimum.
Thus, our solution β̂ must be such that Xβ − y is orthogonal to the (sub)space spanned by all columns ci, i.e.,

(y −Xβ)Tcj = 0, j = 1, . . . , p+ 1 (A.9)

(remember that two vectors u,v are, by definition, orthogonal if their scalar product, uTv, is 0.) Since the
columns cj together form the matrix X, we can write this compactly as

(y −Xβ̂)TX = 0, (A.10)

where the right hand side is the p+ 1-dimensional zero vector. This can equivalently be written as

XTXβ̂ = XTy, (A.11)

from which the normal equations are obtained as from (A.5).
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B. Unconstrained numerical optimization

Given a function J(θ), the optimization problem is about finding the value of the variable x for which the
function J(θ) is either minimized or maximized. To be precise it will here be formulated as finding the value θ̂
that minimizes1 the function J(θ) according to

min
θ
J(θ), (B.1)

where the vector θ is allowed to be anywhere in Rn, motivating the name unconstrained optimization. The
function J(θ) will be referred to as the cost function2, with the motivation that the minimization problem in (B.1)
is striving to minimize some cost. We will make the assumption that the cost function J(θ) is continuously
differentiable on Rn. If there are requirements on θ (e.g. that its components θ have to satisfy a certain equation
g(θ) = 0) the problem is instead referred to as a constrained optimization problem.

The unconstrained optimization problem (B.1) is ever-present across the sciences and engineering, since it
allows us to find the best—in some sense—solution to a particular problem. One example of this arises when
we are searching for the parameters in a linear regression problem by finding the parameters that make the
available measurements as likely as possible by maximizing the likelihood function. For a linear model with
Gaussian noise, this resulted in a least squares problem, for which there is an explicit expression (the normal
equations, (2.17)) describing the solution. However, for most optimization problems that we face there are no
explicit solutions available, forcing us to use approximate numerical methods in solving these problems. We have
seen several concrete examples of this kind, for example the optimization problems arising in deep learning and
logistic regression. This appendix provides a brief introduction to the practical area of unconstrained numerical
optimization.

The key in assembling a working optimization algorithm is to build a simple and useful model of the
complicated cost function J(θ) around the current value for θ. The model is often local in the sense that it is
only valid in a neighbourhood of this value. The idea is then to exploit this model to select a new value for θ
that corresponds to a smaller value for the cost function J(θ). The procedure is then repeated, which explains
why most numerical optimization algorithms are of iterative nature. There are of course many different ways
in which this can be done, but they all share a few key parts which we outline below. Note that we only aim to
provide the overall strategies underlying practical unconstrained optimization algorithms, for precise details we
refer to the many textbooks available on the subject, some of which are referenced towards the end.

B.1. A general iterative solution

What do we mean by a solution to the unconstrained minimization problem in (B.1)? The best possible solution
is the global minimizer, which is a point θ̂ such that J(θ̂) ≤ J(θ) for all θ ∈ Rn. The global minimizer is often
hard to find and instead we typically have to settle for a local minimizer instead. A point θ̂ is said to be a local
minimizer if there is a neighbourhoodM of θ̂ such that J(θ̂) ≤ J(θ) for all θ ∈M.

In our search for a local minimizer we have to start somewhere, let us denote this starting point by θ0. Now,
if θ0 is not a local minimizer of J(θ) then there must be an increment d0 that we can add to θ0 such that
J(θ0 + d0) < J(θ0). By the same argument, if θ1 = θ0 + d0 is not a local minimizer then there must be another
increment d1 that we can add to θ1 such that J(θ1 + d1) < J(θ1). This procedure is repeated until it is no
longer possible to find an increment that decrease the value of the objective function. We have then found a local

1Note that it is sufficient to cover minimization problem, since any maximization problem can be considered as a minimization problem
simply by changing the sign of the cost function.

2Throughout the course we have talked quite a lot about different loss functions. These loss functions are examples of cost functions.
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B. Unconstrained numerical optimization

minimizer. Most of the algorithms capable of solving (B.1) are iterative procedures of this kind. Before moving
on, let us mention that the increment d is often resolved into two parts according to

d = γp. (B.2)

Here, the scalar and positive parameter γ is commonly referred to as the step length and the vector p ∈ Rn is
referred to as the search direction. The intuition is that the algorithm is searching for the solution by moving in
the search direction and how far it moves in this this direction is controlled by the step length.

The above development does of course lead to several questions, where the most pertinent are the following:

1. How can we compute a useful search direction p?
2. How big steps should we make, i.e. what is a good value of the step length γ?
3. How do we determine when we have reached a local minimizer, and stop searching for new directions?

Throughout the rest of this section we will briefly discuss these questions and finally we will assemble the general
form of an algorithm that is often used for unconstrained minimization.

A straightforward way of finding a general characterization of all search directions p resulting in a decrease in
the value of the cost function, i.e. directions p such that

J(θ + p) < J(θ) (B.3)

is to build a local model of the cost function around the point θ. One model of this kind is provided by Taylor’s
theorem, which builds a local polynomial approximation of a function around some point of interest. A linear
approximation of the cost function J(θ) around the point θ is given by

J(θ + p) ≈ J(θ) + pT∇J(θ). (B.4)

By inserting the linear approximation (B.4) of the objective function into (B.3) we can provide a more precise
formulation of how to find a search direction p such that J(θ + p) < J(θ) by asking for which p it holds that
J(θ) + pT∇J(θ) < J(θ), which can be further simplified into

pT∇J(θ) < 0. (B.5)

Inspired by the inequality above we chose a generic description of the search direction according to

p = −V∇J(θ), V � 0, (B.6)

where we have introduced some extra flexibility via the positive definite scaling matrix V . The inspiration came
from the fact that by inserting (B.6) into (B.5) we obtain

pTJ(θ) = −∇TJ(θ)V T∇J(θ) = −‖∇J(θ)‖2V T < 0, (B.7)

where the last inequality follows from the positivity of the squared weighted two-norm, which is defined as
‖a‖2W = aTWa. This shows that p = −V∇J(θ) will indeed result in a search direction that decreases the value
of the objective function. We refer to such a search direction as a descent direction.

The strategy summarized in Algorithm 4 is referred to as line search. Note that we have now introduced
subscript t to clearly show the iterative nature. The algorithm searches along the line defined by starting at the
current iterate θt and then moving along the search direction pt. The decision of how far to move along this line
is made by simply minimizing the cost function along the line

min
γ
J(θt + γpt). (B.8)

Note that this is a one-dimensional optimization problem, and hence simpler to deal with compared to the
original problem. The step length γt that is selected in (B.8) controls how far to move along the current search
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Algorithm 4 General form of unconstrained minimization

1. Set t = 0.

2. while stopping criteria is not satisfied do

a) Compute a search direction pt = −Vt∇J(θt) for some Vt � 0.

b) Find a step length γt > 0 such that J(θt + γtpt) < J(θt).

c) Set θt+1 = θt + γtpt.

d) Set t← t+ 1.

3. end while

direction pt. It is sufficient to solve this problem approximately in order to find an acceptable step length, since
as long as J(θt + γtpt) < J(θt) it is not crucial to find the global minimizer for (B.8).

There are several different indicators that can be used in designing a suitable stopping criteria for row 2 in
Algorithm 4. The task of the stopping criteria is to control when to stop the iterations. Since we know that the
gradient is zero at a stationary point it is useful to investigate when the gradient is close to zero. Another indicator
is to keep an eye on the size of the increments between adjacent iterates, i.e. when θt+1 is close to θt.

In the so-called trust region strategy the order of step 2a and step 2b in Algorithm 4 is simply reversed, i.e. we
first decide how far to step and then we chose in which direction to move.

B.2. Commonly used search directions

Three of the most popular search directions corresponds to specific choices when it comes to the positive definite
matrix Vt in step 2a of Algorithm 4. The simplest choice is to make use of the identity matrix, resulting in the
so-called steepest descent direction described in Section B.2.1. The Newton direction (Section B.2.2) is obtained
by using the inverse of the Hessian matrix and finally we have the quasi-Newton direction (Section B.2.3)
employing an approximation of the inverse Hessian.

B.2.1. Steepest descent direction

Let us start by noting that according to the definition of the scalar product3, the descent condition (B.5) imposes
the following requirement of the search direction

pT∇J(θt) = ‖p‖2‖∇J(θt)‖2 cos(ϕ) < 0, (B.9)

where ϕ denotes the angle between the two vectors p and ∇J(θt). Since we are only interested in finding the
direction we can without loss of generality fix the length of p, implying the scalar product pT∇J(θt) is made as
small as possible by selecting ϕ = π, corresponding to

p = −∇J(θt). (B.10)

Recall that the gradient vector at a point is the direction of maximum rate of change of the function at that point.
This explains why the search direction suggested in (B.10) is referred to as the steepest descent direction.

Sometimes, the use of the steepest descent direction can be very slow. The reason for this is that there is
more information available about the cost function that the algorithm can make use of, which brings us to the
Newton and the quasi-Newton directions described below. They make use of additional information about the
local geometry of the cost function by employing a more descriptive local model.

3The scalar (or dot) product of two vectors a and b is defined as aTb = ‖a‖‖b‖ cos(ϕ), where ‖a‖ denotes the length (magnitude) of
the vector a and ϕ denotes the angle between a and b.
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B.2.2. Newton direction

Let us now instead make use of a better model of the objective function, by also keeping the quadratic term of
the Taylor expansion. The result is the following quadratic approximation m(θt, pt) of the cost function around
the current iterate θt

L(θt + pt) ≈ J(θt) + pTt gt +
1

2
pTt Htpt︸ ︷︷ ︸

=m(θt,pt)

(B.11)

where gt = ∇J(θ)|θ=θt denotes the cost function gradient and Ht = ∇2J(θ)|θ=θt denotes the Hessian, both
evaluated at the current iterate θt. The idea behind the Newton direction is to select the search direction that
minimizes the quadratic model in (B.11), which is obtained by setting its derivative

∂m(θt, pt)

∂pt
= gt +Htpt (B.12)

to zero, resulting in

pt = −H−1t gt. (B.13)

It is often too difficult or too expensive to compute the Hessian, which has motivated the development of
search directions employing an approximation of the Hessian. The generic name for these are quasi-Newton
directions.

B.2.3. Quasi-Newton

The quasi-Newton direction makes use of a local quadratic model m(θt, pt) of the cost function according
to (B.11), similarly to what was done in finding the Newton direction. However, rather than assuming that the
Hessian is available, the Hessian will now instead be learned from the information that is available in the cost
function values and its gradients.

Let us first denote the line segment connecting two adjacent iterates θt and θt+1 by

rt(τ) = θt + τ(θt+1 − θt), τ ∈ [0, 1]. (B.14)

From the fundamental theorem of calculus we know that∫ 1

0

∂

∂τ
∇J(rt(τ))dτ = ∇J(rt(1))−∇J(rt(0)) = ∇J(θt+1)−∇J(θt) = gt+1 − gt, (B.15)

and from the chain rule we have that

∂

∂τ
∇J(rt(τ)) = ∇2J(rt(τ))

∂rt(τ)

∂τ
= ∇2J(rt(τ))(θt+1 − θt). (B.16)

Hence, in combining (B.15) and (B.16) we obtain

yt =

∫ 1

0

∂

∂τ
∇J(rt(τ))dτ =

∫ 1

0
∇2J(rt(τ))stdτ. (B.17)

where we have defined yt = gt+1 − gt and st = θt+1 − θt. An interpretation of the above equation is that the
difference between two consecutive gradients yt is given by integrating the Hessian times st for points θ along
the line segment rt(τ) defined in (B.14). The approximation underlying quasi-Newton methods is now to assume
that this integral can be described by a constant matrix Bt+1, resulting in the following approximation

yt = Bt+1st (B.18)
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of the integral (B.17), which is sometimes referred to as the secant condition or the quasi-Newton equation. The
secant condition above is still not enough to determine the matrix Bt+1, since even though we know that Bt+1 is
symmetric there are still too many degrees of freedom available. This is solved using regularization and Bt+1 is
selected as the solution to

Bt+1 = min
B

‖B −Bt‖2W ,

s.t. B = BT, Bst = yt,
(B.19)

for some weighting matrix W . Depending on which weighting matrix that is used we obtain different algorithms.
The most common quasi-Newton algorithms are referred to as BFGS (named after Broyden, Fletcher, Goldfarb
and Shanno), DFP (named after Davidon, Fletcher and Powell) and Broyden’s method. The resulting Hessian
approximation Bt+1 is then used in place of the true Hessian.

B.3. Further reading

This appendix is heavily inspired by the solid general introduction to the topic of numerical solutions to
optimization problems given by Nocedal and Wright (2006) and by Wills (2017). In solving optimization
problems the initial important classification of the problem is whether it is convex or non-convex. Here we have
mainly been concerned with the numerical solution of non-convex problems. When it comes to convex problems
Boyd and Vandenberghe (2004) provide a good engineering introduction. A thorough and timely introduction to
the use of numerical optimization in the machine learning context is provided by Bottou, Curtis, and Nocedal
(2017). The focus is naturally on large scale problems and as we have explained in the deep learning chapter this
naturally leads to stochastic optimization problems.
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C. Classification loss functions

The classification loss functions illustrated in Figure 5.3 are:

Exponential loss: L(y, c) = exp(−yc).

Hinge loss: L(y, c) =

{
1− yc for yc < 1,

0 otherwise.

Binomial deviance: L(y, c) = log(1 + exp(−yc)).

Huber-like loss: L(y, c) =


−yc for yc < −1,
1
4(1− yc)

2 for − 1 ≤ yc ≤ 0,

0 otherwise.

Misclassification loss: L(y, c) =

{
1 for yc < 0,

0 otherwise.
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